Indonesia has the largest nickel source in the world. It is estimated, there are about 21 million metric tons of nickel reserves in Indonesia. Laterite nickel ore is the most abundant nickel source especially in tropical regions. Mixed hydroxide precipitate (MHP) is intermediate product of this process. In this research, the MHP product from PT. Smelter Nickel Indonesia (PT.SNI) was investigated. The MHP quality content is important for further process of nickel refinery to become Nickel and Cobalt sulphate for battery industry. The MHP was characterized by an X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), a Differential Thermal Analysis. The XRD shows that the untreated MHP was an amorphous-like material that corresponded to Jamborite type mineral, consisting of Ni-O-H. The microstructure consists some unregular shapes with various particle sizes of 1 to 20 µm, whereas some was agglomerated. The thermal data shows there are two endothermic peaks related to the dehydration of moisture and hydrated crystal, while the second was the dehydration of OH group. After the heat treatment of MHP at 850oC, the X-ray diffraction pattern consisted of several phases identified as 82.6% Bunsenite (NiO), 12.4% Cobalt Dicobalt(III) Oxide (Co3O4) and 5% Aluminum Oxide−Alpha (Al2O3) according to Rietveld refinement analysis. The NiO was expected to be the highest content of MHP, followed by Co3O4.

1.
U. W.
Soelistijo
, “Prospect of Potential Nickel Added Value Development in Indonesia,”
Earth Sci.
, vol.
2
, no.
6
, p.
129
,
2013
, doi: .
2.
Y. I.
Supriyatna
,
I. H.
Sihotang
, and Sudibyo, “
Preliminary study of smelting of Indonesian Nickel Laterite Ore using an Electric Arc Furnace
,”
Mater. Today Proc.
, vol.
13
, pp.
127
131
,
2019
, doi: .
3.
A.
Van der Ent
,
A. J. M.
Baker
,
M. M. J.
van Balgooy
, and
A.
Tjoa
, “
Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining
,”
J. Geochemical Explor.
, vol.
128
, pp.
72
79
,
2013
, doi: .
4.
M. V.
Reddy
,
A.
Mauger
,
C. M.
Julien
,
A.
Paolella
, and
K.
Zaghib
, “
Brief history of early lithium-battery development
,”
Materials (Basel)
., vol.
13
, no.
8
, pp.
1
9
,
2020
, doi: .
5.
H. J.
Noh
,
S.
Youn
,
C. S.
Yoon
, and
Y. K.
Sun
, “
Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries
,”
J. Power Sources
, vol.
233
, pp.
121
130
,
2013
, doi: .
6.
N.
Mohamed
and
N. K.
Allam
, “
Recent advances in the design of cathode materials for Li-ion batteries
,”
RSC Adv.
, vol.
10
, no.
37
, pp.
21662
21685
,
2020
, doi: .
7.
Y.
Lu
,
Y.
Zhang
,
Q.
Zhang
,
F.
Cheng
, and
J.
Chen
, “
Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries
,”
Particuology
, vol.
53
, pp.
1
11
,
2020
, doi: .
8.
Y.
Di Zhang
,
Y.
Li
,
X. H.
Xia
,
X. L.
Wang
,
C. D.
Gu
, and
J. P.
Tu
, “
High-energy cathode materials for Li-ion batteries: A review of recent developments
,”
Sci. China Technol. Sci.
, vol.
58
, no.
11
, pp.
1809
1828
,
2015
, doi: .
9.
F.
Schipper
,
E. M.
Erickson
,
C.
Erk
,
J.-Y.
Shin
,
F. F.
Chesneau
, and
D.
Aurbach
, “
Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes
,”
J. Electrochem. Soc.
, vol.
164
, no.
1
, pp.
A6220
A6228
,
2017
, doi: .
10.
W.
Yan
,
Y.
Liu
,
S.
Chong
,
Y.
Zhou
,
J.
Liu
, and
Z.
Zou
, “
Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries
,”
Prog. Chem.
, vol.
29
, no.
2–3
, pp.
198
209
,
2017
, doi: .
11.
W.
Cho
et al, “
Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating
,”
J. Power Sources
, vol.
282
, pp.
45
50
,
2015
, doi: .
12.
S.
Ahmed
,
P. A.
Nelson
,
K. G.
Gallagher
,
N.
Susarla
, and
D. W.
Dees
, “
Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries
,”
J. Power Sources
, vol.
342
, pp.
733
740
,
2017
, doi: .
13.
Y.I.
Supriyatna
et al, “
Preliminary Study of Smelting of Indonesian Nickel Laterite Ore using an Electric Arc Furnace
,”
Materials Today: Proceedings
Volume
13
, Part 1,
2019
, Pages
127
131
, .
14.
Z.
Mubarok
and
J.
Lieberto
, “
Precipitation of Nickel Hydroxide from Simulated and Atmospheric-leach Solution of Nickel Laterite Ore
,”
Procedia Earth and Planetary Science
6
(
2013
)
457
464
. doi: 1016/j.proeps.2013.01.060.
15.
Z.
Mubarok
and
I.L.
Hanif
, “
Cobalt and Nickel Separation in Nitric Acid Solution by Solvent Extraction Using Cyanex 272 and Versatic 10
,”
Procedia Chemistry
19
,
2016
,
743
750
, .
16.
Z.T.
Ichlas
,
M.Z.
Mubarok
,
A.
Magnalita
,
J.
Vaughan
,
A.T.
Sugiarto
, “
Processing mixed nickel-cobalt hydroxide precipitate by sulfuric acid leaching followed by selective oxidative precipitation of cobalt and manganese
”,
Hydrometallurgy
, Vol.
191
, January
2020
,
105185
. .
17.
Nina
Safitri
,
M. Zaki
Mubarok
,
Ronny
Winarko
, and
Zela
Tanlega
, “
Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization
,”
AIP Conference Proceedings
1964
,
020030
(
2018
); .
18.
T.
Gultom
and
A.
Sianipar
, “
High pressure acid leaching: a newly introduced technology in Indonesia
,”
IOP Conf. Ser.: Earth Environ. Sci.
413
012015
, .
19.
Manawan
,
M.
,
Kartini
,
E.
&
Avdeev
,
M.
, “
Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction
,”
J. Appl. Cryst.
54
,
2021
, .
20.
E.
Kartini
,
Valentina
Yapriadi
,
Heri
Jodi
,
Maykel
Manawan
,
Cipta
Panghegar
, and
Wahyudianingsih
, “
Solid electrolyte composite Li4P2O7–Li3PO4 for lithium ion battery
,”
Progress in Natural Science: Materials International
,
30
,
2020
,
168
173
, .
21.
Refino
,
A.D.
,
Yulianto
,
N.
,
Syamsu
,
I.
et al “
Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode
,”
Sci Rep
11
,
19779
,
2021
, .
This content is only available via PDF.
You do not currently have access to this content.