Interface Engineering is an effective route to tune structural and electrical properties in semiconductor heterostructures. Two kinds of typical van der Waals (vdW)-type electrical contacts, i.e., the electrical contacts of the Pb-I interface and Cs-I interface with a black phosphorus (BP) monolayer, respectively, in CsPbI3-BP heterostructures are studied by first-principles calculations. The electronic band structures of both CsPbI3 slabs and the BP monolayer are preserved in the combined vdW CsPbI3-BP heterostructures. The heterostructure of the Pb-I interface contacting with BP demonstrates the type-I band alignment, and the Cs-I interface contacting with the BP heterostructure demonstrates the type-II band alignment. The reason for the energy level shift is the work function difference of CsPbI3 slabs relative to the BP monolayer, which drives electrons and holes to move spontaneously. In addition, the CsPbI3-BP heterostructures show much better optical properties than CsPbI3 slabs. The light absorptions are enhanced in the CsPbI3-BP heterostructures, especially in the infrared region, which would improve the use of infrared light in CsPbI3 perovskite solar cells. This work suggests that such inorganic perovskite-BP heterostructures have significant potential for future optoelectronic applications and can enable broad possibilities with compositional tunability in inorganic perovskites.

1.
Y.
Yang
and
J. B.
You
,
Nature
544
(
7649
),
155
156
(
2017
).
2.
Y.-Q.
Zhao
,
L.-J.
Wu
,
B.
Liu
,
L.-Z.
Wang
,
P.-B.
He
, and
M.-Q.
Cai
,
J. Power Sources
313
,
96
103
(
2016
).
3.
J. M.
Ball
,
M. M.
Lee
,
A.
Hey
, and
H. J.
Snaith
,
Energy Environ. Sci.
6
(
6
),
1739
1743
(
2013
).
4.
W. J.
Yin
,
T. T.
Shi
, and
Y. F.
Yan
,
Appl. Phys. Lett.
104
(
6
),
063903
(
2014
).
5.
Q.
Hu
,
H.
Wu
,
J.
Sun
,
D. H.
Yan
,
Y. L.
Gao
, and
J. L.
Yang
,
Nanoscale
8
(
9
),
5350
5357
(
2016
).
6.
J.
Xiong
,
B. C.
Yang
,
C. H.
Zhou
,
J. L.
Yang
,
H. C.
Duan
,
W. L.
Huang
,
X.
Zhang
,
X. D.
Xia
,
L.
Zhang
,
H.
Huang
, and
Y. L.
Gao
,
Org. Electron.
15
(
4
),
835
843
(
2014
).
7.
S.
Abdulrahman
,
C. H.
Wang
,
C. H.
Cao
,
C. J.
Zhang
,
J. L.
Yang
, and
L.
Jiang
,
Physica B
522
,
43
47
(
2017
).
8.
J.
Xiong
,
B. C.
Yang
,
C. H.
Cao
,
R. S.
Wu
,
Y. L.
Huang
,
J.
Sun
,
J.
Zhang
,
C. B.
Liu
,
S. H.
Tao
,
Y. L.
Gao
, and
J. L.
Yang
,
Org. Electron.
30
,
30
35
(
2016
).
9.
P.
Liu
,
X. L.
Liu
,
L.
Lyu
,
H. P.
Xie
,
H.
Zhang
,
D. M.
Niu
,
H.
Huang
,
C.
Bi
,
Z. G.
Xiao
,
J. S.
Huang
, and
Y. L.
Gao
,
Appl. Phys. Lett.
106
(
19
),
193903
(
2015
).
10.
J.
Xiong
,
B. C.
Yang
,
J.
Yuan
,
L.
Fan
,
X.
Hua
,
H. P.
Xie
,
L.
Lyu
,
R. L.
Cui
,
Y. P.
Zou
,
C. H.
Zhou
,
D. M.
Niu
,
Y. L.
Gao
, and
J. L.
Yang
,
Org. Electron.
17
,
253
261
(
2015
).
11.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
,
Science
354
(
6308
),
92
95
(
2016
).
12.
Y. W.
Wang
,
S.
Liu
,
B. W.
Zeng
,
H.
Huang
,
J.
Xiao
,
J. B.
Li
,
M. Q.
Long
,
S.
Xiao
,
X. F.
Yu
,
Y. L.
Gao
, and
J.
He
,
Nanoscale
9
(
14
),
4683
4690
(
2017
).
13.
F.
Xie
,
Z. Q.
Fan
,
X. J.
Zhang
,
J. P.
Liu
,
H. Y.
Wang
,
K.
Liu
,
J. H.
Yu
, and
M. Q.
Long
,
Org. Electron.
42
,
21
27
(
2017
).
14.
Q.
Wei
and
X. H.
Peng
,
Appl. Phys. Lett.
104
(
25
),
251915
(
2014
).
15.
H.
Liu
,
Y. C.
Du
,
Y. X.
Deng
, and
P. D.
Ye
,
Chem. Soc. Rev.
44
(
9
),
2732
2743
(
2015
).
16.
J.
Dai
and
X. C.
Zeng
,
J. Phys. Chem. Lett.
5
(
7
),
1289
1293
(
2014
).
17.
R. S.
Wu
,
J. L.
Yang
,
J.
Xiong
,
P.
Liu
,
C. H.
Zhou
,
H.
Huang
,
Y. L.
Gao
, and
B. C.
Yang
,
Org. Electron.
26
,
265
272
(
2015
).
18.
B.
Liu
,
L. J.
Wu
,
Y. Q.
Zhao
,
L. Z.
Wang
, and
M. Q.
Caii
,
Phys. Chem. Chem. Phys.
18
(
29
),
19918
19925
(
2016
).
19.
J. E.
Padilha
,
A.
Fazzio
, and
A. J. R.
da Silva
,
Phys. Rev. Lett.
114
(
6
),
066803
(
2015
).
20.
Y.
Hong
,
J. C.
Zhang
, and
X. C.
Zeng
,
Nanoscale
8
(
46
),
19211
19218
(
2016
).
21.
B.
Chen
,
Y.
Bai
,
Z. S.
Yu
,
T.
Li
,
X. P.
Zheng
,
Q. F.
Dong
,
L.
Shen
,
M.
Boccard
,
A.
Gruverman
,
Z.
Holman
, and
J. S.
Huang
,
Adv. Energy Mater.
6
(
19
),
1601128
(
2016
).
22.
H.
Wu
,
C. J.
Zhang
,
K. X.
Ding
,
L. J.
Wang
,
Y. L.
Gao
, and
J. L.
Yang
,
Org. Electron.
45
,
302
307
(
2017
).
23.
Y.
Lee
,
J.
Kwon
,
E.
Hwang
,
C. H.
Ra
,
W. J.
Yoo
,
J. H.
Ahn
,
J. H.
Park
, and
J. H.
Cho
,
Adv. Mater.
27
(
1
),
41
46
(
2015
).
24.
D.
Forgacs
,
L.
Gil-Escrig
,
D.
Perez-Del-Rey
,
C.
Momblona
,
J.
Werner
,
B.
Niesen
,
C.
Ballif
,
M.
Sessolo
, and
H. J.
Bolink
,
Adv. Energy Mater.
7
(
8
),
1602121
(
2017
).
25.
B.
Liu
,
L. J.
Wu
,
Y. Q.
Zhao
,
L. Z.
Wang
, and
M. Q.
Cai
,
Phys. Chem. Chem. Phys.
17
(
40
),
27088
27093
(
2015
).
26.
B.
Liu
,
L. J.
Wu
,
Y. Q.
Zhao
,
L. Z.
Wang
, and
M. Q.
Cai
,
Eur. Phys. J. B
89
(
3
),
80
(
2016
).
27.
Y. Q.
Zhao
,
B.
Liu
,
Z. L.
Yu
,
J. M.
Ma
,
Q.
Wan
,
P. B.
He
, and
M. Q.
Cai
,
J. Mater. Chem. C
5
,
5356
(
2017
).
28.
X. J.
Zhang
,
D.
Zhang
,
F.
Xie
,
X. L.
Zheng
,
H. Y.
Wang
, and
M. Q.
Long
,
Phys. Lett. A
381
(
25-26
),
2097
2102
(
2017
).
29.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
(
1999
).
30.
B.
Liu
,
L. J.
Wu
,
Y. Q.
Zhao
,
L. Z.
Wang
, and
M. Q.
Cai
,
J. Magn. Magn. Mater.
420
,
218
224
(
2016
).
31.
D. M.
Trots
and
S. V.
Myagkota
,
J. Phys. Chem. Solids
69
(
10
),
2520
2526
(
2008
).
32.
L.
Zhang
and
W. Z.
Liang
,
J. Phys. Chem. Lett.
8
(
7
),
1517
1523
(
2017
).

Supplementary Material

You do not currently have access to this content.