Due to its high chemical stability and high power conversion efficiency as a solar cell absorber, the inorganic halide perovskite, CsPbI3, is considered one of the most promising competitors to its hybrid organic-inorganic counterpart, CH3NH3PbI3. However, the phase transition from the photoactive black phase to the inactive yellow phase is a remarkable limitation that harms long-term phase stability. In particular, the phase transitions follow different pathways as the temperature increases and/or decreases, a phenomenon that is anomalous and remains poorly understood. In this study, we systematically calculated the temperature-dependent free energy of CsPbI3 in different crystal phases (α, β, γ, δ) by considering the phonon contribution to the Gibbs free energy. It is found that the free energy results from calculations that include harmonic phonons cannot reproduce experimental observations. Alternatively, we utilized the renormalized phonon quasiparticle approach to derive the free energies of different CsPbI3 phases at finite temperatures. Based on these calculated free energies, whose derivations included the anharmonic effect, we observed phase-transition processes consistent with experimental results. The analysis of the temperature effect on the phonon frequencies further demonstrated that anharmonic effects in the CsPbI3 had a significant influence on its phase transitions.

1.
G. E.
Eperon
,
G. M.
Paternò
,
R. J.
Sutton
 et al,
J. Mater. Chem. A
3
,
19688
(
2015
).
2.
X.-G.
Zhao
,
J.-H.
Yang
,
Y.
Fu
 et al,
J. Am. Chem. Soc.
139
,
2630
(
2017
).
3.
S.
Li
,
J.
Luo
,
J.
Liu
 et al,
J. Phys. Chem. Lett.
10
(
2019
),
1999
(
2019
).
4.
J. A.
Steele
,
H.
Jin
,
I.
Dovgaliuk
 et al,
Science
365
,
679
(
2019
).
5.
C.
Liu
,
Y.
Yang
,
X.
Xia
 et al,
Adv. Energy Mater.
10
,
1903751
(
2020
).
6.
S.
Dastidar
,
D. A.
Egger
,
L. Z.
Tan
 et al,
Nano Lett.
16
,
3563
(
2016
).
7.
Q.
Jiang
,
L.
Zhang
,
H.
Wang
 et al,
Nat. Energy
2
,
16177
(
2017
).
8.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
 et al,
Nat. Photonics
13
,
460
(
2019
).
9.
T. A.
Berhe
,
W.-N.
Su
,
C.-H.
Chen
 et al,
Energy Environ. Sci.
9
,
323
(
2016
).
10.
B.
Conings
,
J.
Drijkoningen
,
N.
Gauquelin
 et al,
Adv. Energy Mater.
5
,
1500477
(
2015
).
11.
W.
Ahmad
,
J.
Khan
,
G.
Niu
 et al,
Sol. RRL
1
,
1700048
(
2017
).
12.
J.
Brgoch
,
A. J.
Lehner
,
M.
Chabinyc
 et al,
J. Phys. Chem. C
118
,
27721
(
2014
).
13.
M.
Afsari
,
A.
Boochani
, and
M.
Hantezadeh
,
Optik
127
,
11433
(
2016
).
14.
C. F. J.
Lau
,
Z.
Wang
,
N.
Sakai
 et al,
Adv. Energy Mater.
9
,
1901685
(
2019
).
15.
K.
Wang
,
Z.
Jin
,
L.
Liang
 et al,
Nano Energy
58
,
175
(
2019
).
16.
X.
Ling
,
S.
Zhou
,
J.
Yuan
 et al,
Adv. Energy Mater.
9
,
1900721
(
2019
).
17.
A.
Ho-Baillie
,
M.
Zhang
,
C. F. J.
Lau
 et al,
Joule
3
,
938
(
2019
).
18.
R. J.
Sutton
,
M. R.
Filip
,
A. A.
Haghighirad
 et al,
ACS Energy Lett.
3
,
1787
(
2018
).
19.
A.
Marronnier
,
G.
Roma
,
S.
Boyer-Richard
 et al,
ACS Nano
12
,
3477
(
2018
).
20.
R. X.
Yang
,
J. M.
Skelton
,
E. L.
da Silva
 et al,
J. Phys. Chem. Lett.
8
,
4720
(
2017
).
21.
Y.
An
,
J.
Hidalgo
,
C. A. R.
Perini
 et al,
ACS Energy Lett.
6
,
1942
(
2021
).
22.
U.-G.
Jong
,
C.-J.
Yu
,
Y.-H.
Kye
 et al,
J. Mater. Chem. A
6
,
17994
(
2018
).
23.
Y.-K.
Jung
,
J.-H.
Lee
,
A.
Walsh
 et al,
Chem. Mater.
29
,
3181
(
2017
).
24.
Z.
Yao
,
W.
Zhao
, and
S.
Liu
,
J. Mater. Chem. A
9
,
11124
(
2021
).
25.
A.
Marronnier
,
H.
Lee
,
B.
Geffroy
 et al,
J. Phys. Chem. Lett.
8
,
2659
(
2017
).
26.
U.-G.
Jong
,
Y.-S.
Kim
,
C.-H.
Ri
 et al,
J. Phys. Chem. C
125
,
6013
(
2021
).
27.
D.
Liu
,
W.
Zha
,
Y.
Guo
 et al,
ACS Omega
5
,
893
(
2020
).
28.
D.-B.
Zhang
,
T.
Sun
, and
R. M.
Wentzcovitch
,
Phys. Rev. Lett.
112
,
058501
(
2014
).
29.
Y.
Lu
,
T.
Sun
,
P.
Zhang
 et al,
Phys. Rev. Lett.
118
,
145702
(
2017
).
30.
Z.
Zhang
,
D. B.
Zhang
,
T.
Sun
 et al,
Comput. Phys. Commun.
243
,
110
(
2019
).
31.
P. B.
Allen
,
Phys. Rev. B
92
,
064106
(
2015
).
32.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
A.
Carreras
,
A.
Togo
, and
I.
Tanaka
,
Comput. Phys. Commun.
221
,
221
(
2017
).
36.
T.
Tadano
,
Y.
Gohda
, and
S.
Tsuneyuki
,
J. Phys.: Condens. Matter
26
,
225402
(
2014
).
37.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
,
Inorg. Chem.
52
,
9019
(
2013
).
38.
D. M.
Trots
and
S. V.
Myagkota
,
J. Phys. Chem. Solids
69
,
2520
(
2008
).
39.
Y.
Huang
,
W.-J.
Yin
, and
Y.
He
,
J. Phys. Chem. C
122
,
1345
(
2018
).
40.
H. M.
Ghaithan
,
Z. A.
Alahmed
,
S. M. H.
Qaid
 et al,
Superlattices Microstruct.
140
,
106474
(
2020
).
41.
X.
Chen
,
D.
Han
,
Y.
Su
 et al,
Phys. Status Solidi (RRL) RRL
12
,
1800193
(
2018
).
42.
Y.-Y.
Zhang
,
S.
Chen
,
P.
Xu
 et al,
Chin. Phys. Lett.
35
,
036104
(
2018
).
43.
A. S.
Thind
,
X.
Huang
,
J.
Sun
 et al,
Chem. Mater.
29
,
6003
(
2017
).
44.
U.-G.
Jong
,
C.-J.
Yu
,
Y.-H.
Kye
 et al,
Phys. Rev. B
99
,
184105
(
2019
).
45.
H.
Yao
,
J.
Zhao
,
Z.
Li
 et al,
Mater. Chem. Front.
5
,
1221
(
2021
).
46.
A.
Lamichhane
and
N. M.
Ravindra
,
SN Appl. Sci.
3
,
153
(
2021
).
47.
A. S.
Verma
and
A.
Kumar
,
J. Alloys Compd.
541
,
210
(
2012
).
48.
R. A.
Evarestov
,
A.
Senocrate
,
E. A.
Kotomin
 et al,
Phys. Chem. Chem. Phys.
21
,
7841
(
2019
).
49.
S.
Sharma
,
N.
Weiden
, and
A.
Weiss
,
Z. Phys. Chem.
175
,
63
(
1992
).
50.
M.
de Jong
,
W.
Chen
,
T.
Angsten
 et al,
Sci. Data
2
,
150009
(
2015
).
51.
A.
Kurt
,
J. Appl. Phys.
128
,
075106
(
2020
).
52.
G.
Yuan
,
S.
Qin
,
X.
Wu
 et al,
Phase Transitions
91
,
38
(
2018
).
You do not currently have access to this content.