With the rise of Internet of Things, indoor organic photovoltaic (IOPV) devices as the promising power supply unit of off-grid electronics have made great progress in recent years. However, as the only acceptable end-goal, their commercial large-scale production is still a long way off although the absolute efficiency values achieve significant breakthroughs and have exceeded 30%. One of the main obstacles to practical application is the impact of IOPV devices on human vision under indoor conditions. Because the IOPV devices usually require expansive areas deployed for larger output power under indoor cases, a semitransparent strategy is commonly adopted to reduce the effects on indoor light environments. Conventional semitransparent bulk heterojunctions (BHJs) with wide-bandgap donors and near-infrared absorbing acceptors generate a huge proportion of residual blue light, which may cause human visual fatigue and injury. Herein, we propose a fullerene derivative blending strategy to suppress the blue light hazards caused by the state-of-the-art IOPV devices and improve the overall device performance. A series of high-efficient non-fullerene BHJs were selected as model systems, and a low dosage of PC71BM molecules can effectively reduce the blue light hazard efficacy (KB,v). Furthermore, with the desirable electron transport property and strong absorbance of PC71BM in the wavelength range of 400–500 nm, the ternary PM6:Y6:PC71BM devices enjoy remarkably improved power conversion efficiencies. This work provides an effective approach to simultaneously suppress KB,v values and improve performance of IOPV devices.

1.
S. C.
Li
,
L. D.
Xu
, and
S. S.
Zhao
,
Inf. Syst. Front.
17
(
2
),
243
(
2015
).
2.
K.
Khalil
,
K.
Elgazzar
,
M.
Seliem
, and
M.
Bayoumi
,
Internet Things
12
,
100293
(
2020
).
3.
H.
Zhang
,
J.
Baeyens
,
G.
Caceres
,
J.
Degreve
, and
Y.
Lv
,
Prog. Energy Combust. Sci.
53
,
1–40
(
2016
).
4.
W.
Wang
,
C.
Yan
,
T.-K.
Lau
,
J.
Wang
,
K.
Liu
,
Y.
Fan
,
X.
Lu
, and
X.
Zhan
,
Adv. Mater.
29
(
31
),
1701308
(
2017
).
5.
C.
Sun
,
R.
Xia
,
H.
Shi
,
H.
Yao
,
X.
Liu
,
J.
Hou
,
F.
Huang
,
H.-L.
Yip
, and
Y.
Cao
,
Joule
2
(
9
),
1816
(
2018
).
6.
J.
Luke
,
L.
Correa
,
J.
Rodrigues
,
J.
Martins
,
M.
Daboczi
,
D.
Bagnis
, and
J.-S.
Kim
,
Adv. Energy Mater.
11
(
9
),
2003405
(
2021
).
7.
X.
Huang
,
B.
Sun
,
Y.
Li
,
C.
Jiang
,
D.
Fan
,
J.
Fan
, and
S. P.
Forrest
,
Appl. Phys. Lett.
116
(
15
),
153501
(
2020
).
8.
A.
Azeez
and
K. S.
Narayan
,
Appl. Phys. Lett.
117
(
4
),
043302
(
2020
).
9.
Y.
Bai
,
F.
Han
,
R.
Shi
,
F.
Wang
,
S.
Jiang
,
J.
Wang
, and
Z.
Tan
,
Sol. RRL
6
,
2200174
(
2022
).
10.
S.
Dong
,
T.
Jia
,
K.
Zhang
,
J.
Jing
, and
F.
Huang
,
Joule
4
(
9
),
2004
(
2020
).
11.
M.
Jiang
,
H.
Bai
,
H.
Zhi
,
L.
Yan
,
H. Y.
Woo
,
L.
Tong
,
J.
Wang
,
F.
Zhang
, and
Q.
An
,
Energy Environ. Sci.
14
(
7
),
3945
(
2021
).
12.
F.
Qin
,
L.
Sun
,
H.
Chen
,
Y.
Liu
,
X.
Lu
,
W.
Wang
,
T.
Liu
,
X.
Dong
,
P.
Jiang
,
Y.
Jiang
,
L.
Wang
, and
Y.
Zhou
,
Adv. Mater.
33
(
39
),
2103017
(
2021
).
13.
W.
Song
,
B.
Fanady
,
R.
Peng
,
L.
Hong
,
L.
Wu
,
W.
Zhang
,
T.
Yan
,
T.
Wu
,
S.
Chen
, and
Z.
Ge
,
Adv. Energy Mater.
10
(
15
),
2000136
(
2020
).
14.
K.
Yu
,
W.
Song
,
Y.
Li
,
Z.
Chen
,
J.
Ge
,
D.
Yang
,
J.
Zhang
,
L.
Xie
,
C.
Liu
, and
Z.
Ge
,
Small Struct.
2
(
11
),
2100099
(
2021
).
15.
N.-W.
Teng
,
S.-S.
Yang
, and
F.-C.
Chen
,
IEEE J. Photovoltaics
8
(
3
),
752
(
2018
).
16.
L.
Xie
,
W.
Song
,
J.
Ge
,
B.
Tang
,
X.
Zhang
,
T.
Wu
, and
Z.
Ge
,
Nano Energy
82
,
105770
(
2021
).
17.
H. S.
Ryu
,
S. Y.
Park
,
T. H.
Lee
,
J. Y.
Kim
, and
H. Y.
Woo
,
Nanoscale
12
(
10
),
5792
(
2020
).
18.
L.-K.
Ma
,
Y.
Chen
,
P. C. Y.
Chow
,
G.
Zhang
,
J.
Huang
,
C.
Ma
,
J.
Zhang
,
H.
Yin
,
A. M. H.
Cheung
,
K. S.
Wong
,
S. K.
So
, and
H.
Yan
,
Joule
4
(
7
),
1486
(
2020
).
19.
Z.
Ding
,
R.
Zhao
,
Y.
Yu
, and
J.
Liu
,
J. Mater. Chem. A
7
(
46
),
26533
(
2019
).
20.
Y.
Cui
,
Y.
Wang
,
J.
Bergqvist
,
H.
Yao
,
Y.
Xu
,
B.
Gao
,
C.
Yang
,
S.
Zhang
,
O.
Inganas
,
F.
Gao
, and
J.
Hou
,
Nat. Energy
4
(
9
),
768
(
2019
).
21.
Z.-H.
Chen
,
H.
Yin
,
J. K. W.
Ho
,
L.-Y.
Cui
,
S. K.
So
, and
X.-T.
Hao
,
Appl. Phys. Lett.
118
(
4
),
043301
(
2021
).
22.
H.
Yin
,
J. K. W.
Ho
,
V.
Piradi
,
S.
Chen
,
X.
Zhu
, and
S. K.
So
,
Small Methods
4
(
8
),
2000136
(
2020
).
23.
X.
Liu
,
Z.
Liu
,
M.
Chen
,
Q.
Wang
,
F.
Pan
,
H.
Liu
,
L.
Zhang
, and
J.
Chen
, “Using 3.0 eV Large Bandgap Conjugated Polymer as Host Donor to Construct Ternary Semi-Transparent Polymer Solar Cells: Increased Average Visible Transmittance and Modified Color Temperature,”
Macromol. Rapid Commun.
e2200199
(published online
2022
).
24.
Y.
Chang
,
X.
Zhu
,
L.
Zhu
,
Y.
Wang
,
C.
Yang
,
X.
Gu
,
Y.
Zhang
,
J.
Zhang
,
K.
Lu
,
X.
Sun
, and
Z.
Wei
,
Nano Energy
86
,
106098
(
2021
).
25.
H.
Yin
,
K. L.
Chiu
,
P.
Bi
,
G.
Li
,
C.
Yan
,
H.
Tang
,
C.
Zhang
,
Y.
Xiao
,
H.
Zhang
,
W.
Yu
,
H.
Hu
,
X.
Lu
,
X.
Hao
, and
S. K.
So
,
Adv. Electron. Mater.
5
(
10
),
1900497
(
2019
).
26.
M. A.
Saeed
,
S. H.
Kim
,
H.
Kim
,
J.
Liang
,
H. Y.
Woo
,
T. G.
Kim
,
H.
Yan
, and
J. W.
Shim
,
Adv. Energy Mater.
11
(
27
),
2003103
(
2021
).
27.
S. Y.
Park
,
C.
Labanti
,
J.
Luke
,
Y.-C.
Chin
, and
J.-S.
Kim
,
Adv. Energy Mater.
12
(
3
),
2103237
(
2022
).
28.
Z.
Yang
,
C.
Guan
,
X.
Jiang
,
G.
Zhang
,
C.
Xie
,
C.
Liu
,
C.
Xiao
, and
W.
Li
,
Sol. RRL
6
(
6
),
2100981
(
2022
).
29.
W. T.
Ham
,
J. J.
Ruffolo
,
H. A.
Mueller
,
A. M.
Clarke
, and
M. E.
Moon
,
Invest. Ophthalmol. Vis. Sci.
17
(
10
),
1029
1035
(
1978
).
30.
X.
Ouyang
,
J.
Yang
,
Z.
Hong
,
Y.
Wu
,
Y.
Xie
, and
G.
Wang
,
Biomed. Pharmacother.
130
,
110577
(
2020
).
31.
J.
Nie
,
Z.
Chen
,
F.
Jiao
,
J.
Zhan
,
Y.
Chen
,
Z.
Pan
,
C.
Deng
,
X.
Xi
,
X.
Kang
,
Y.
Wang
,
Q.
Wang
,
W.
Dang
,
W.
Dong
,
T.
Zhou
,
S.
Zhou
,
X.
Yu
,
Y.
Tong
,
G.
Zhang
, and
B.
Shen
,
Opt. Laser Technol.
145
,
107463
(
2022
).
32.
Y.
Chaopu
,
F.
Wenqing
,
T.
Jiancheng
,
Y.
Fan
,
L.
Yanfeng
, and
L.
Chun
,
Opt. Express
26
(
21
),
27021
(
2018
).
33.
F.
Behar-Cohen
,
C.
Martinsons
,
F.
Viénot
,
G.
Zissis
,
A.
Barlier-Salsi
,
J.
Cesarini
,
O.
Enouf
,
M.
Garcia
,
S.
Picaud
, and
D.
Attia
,
Prog. Retinal Eye Res.
30
(
4
),
239
(
2011
).
34.
P. V.
Algvere
,
J.
Marshall
, and
S.
Seregard
,
Acta Ophthalmol. Scand.
84
(
1
),
4
(
2006
).
35.
International Electrotechnical Commission
,
IEC TR 62778:2014 Application of IEC 62471 for the Assessment of Blue Light Hazard to Light Sources and Luminaires
(
IEC
,
Geneva
,
2014
).
36.
J.
Zhang
,
W.
Guo
,
B.
Xie
,
X.
Yu
,
X.
Luo
,
T.
Zhang
,
Z.
Yu
,
H.
Wang
, and
X.
Jin
,
Opt. Laser Technol.
94
,
193
(
2017
).
37.
X.
Zhu
,
X.
Guo
,
J.
Zhang
,
J.
Liu
,
F.
Jiang
,
X.
Zhu
,
X.
Guo
,
J.
Zhang
,
J.
Liu
, and
F.
Jiang
,
Opt. Lasers Eng.
134
,
106174
(
2020
).
38.
P.
Bi
and
X.
Hao
,
Sol. RRL
3
(
1
),
1800263
(
2019
).
39.
T.
Ameri
,
P.
Khoram
,
J.
Min
, and
C. J.
Brabec
,
Adv. Mater.
25
(
31
),
4245
(
2013
).
40.
M.-A.
Pan
,
T.-K.
Lau
,
Y.
Tang
,
Y.-C.
Wu
,
T.
Liu
,
K.
Li
,
M.-C.
Chen
,
X.
Lu
,
W.
Ma
, and
C.
Zhan
,
J. Mater. Chem. A
7
(
36
),
20713
(
2019
).
41.
T.
Zhang
,
C.
An
,
Y.
Cui
,
J.
Zhang
,
P.
Bi
,
C.
Yang
,
S.
Zhang
, and
J.
Hou
,
Adv. Mater.
34
(
2
),
2105803
(
2022
).
42.
K.-N.
Zhang
,
Z.-N.
Jiang
,
T.
Wang
,
J.-W.
Qiao
,
L.
Feng
,
C.-C.
Qin
,
H.
Yin
,
S.-K.
So
, and
X.-T.
Hao
,
Nano Energy
79
,
105513
(
2021
).
43.
W.
Li
,
J.
Cai
,
Y.
Yan
,
F.
Cai
,
S.
Li
,
R. S.
Gurney
,
D.
Liu
,
J. D.
McGettrick
,
T. M.
Watson
,
Z.
Li
,
A. J.
Pearson
,
D. G.
Lidzey
,
J.
Hou
, and
T.
Wang
,
Sol. RRL
2
(
9
),
1800114
(
2018
).
44.
R.
Shi
,
H.
Hu
,
T.
Chen
,
R.
Gui
,
J.
Liu
,
X.
Hao
, and
H.
Yin
, “
Extracting energetic disorder in organic solar cells using percolation models
,”
ChemPhysMater
(published online
2022
).
45.
Z.
Chen
,
H.
Yin
,
Z.
Wen
,
S. K.
So
, and
X.
Hao
,
Sci. Bull.
66
(
16
),
1641
(
2021
).

Supplementary Material

You do not currently have access to this content.