Spin-dependent properties of lead halide perovskites (LHPs) have recently gained significant attention paving their way toward spin-optoelectronic applications. However, separate measurements of the electron and hole spin relaxation rates are so far missing in LHPs. The knowledge of the electron and hole spin relaxation timescales is necessary to understand the spin-dependent properties of LHPs. Here, we report on the spin polarization dynamics in CsPbI3 nanocrystals (NCs). We employ polarization dependent ultrafast differential transmission spectroscopy (DTS) at room temperature to study the spin polarization dynamics in this system. In the case of pure CsPbI3 NCs, it is not possible to measure separately electron and hole spin relaxation rates from the polarization dependent DTS. Here, we introduce the soluble fullerene derivative PC60BM as an electron acceptor along with CsPbI3 to create an imbalance between the photoexcited electrons and holes in the NCs and, thus, affecting their spin-dependent carrier distribution. CsPbI3:PC60BM blend sample shows a distinct difference in the spin dependent kinetics of the DTS spectra as compared to the NCs-only sample. With the help of a kinetic model for the spin-dependent charge carrier distributions, we separately determine the electron and hole spin relaxation times in CsPbI3 NCs. We find that the room temperature hole spin lifetime (τh ∼ 5 ps) is ∼13 times longer than the electron spin lifetime (τe ∼ 0.4 ps). We ascribe the fast electron spin relaxation to the presence of strong spin–orbit coupling in the conduction band, which is ineffective for holes in the s-type valence band.

1.
M. A.
Green
,
Y.
Hishikawa
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
, and
A. W. Y.
Ho-Baillie
,
Prog. Photovoltaics
26
,
427
(
2018
).
2.
X.-K.
Liu
,
W.
Xu
,
S.
Bai
,
Y.
Jin
,
J.
Wang
,
R. H.
Friend
, and
F.
Gao
,
Nat. Mater.
20
,
10
(
2021
).
3.
T.
Zhang
,
J.
Wu
,
P.
Zhang
,
W.
Ahmad
,
Y.
Wang
,
M.
Alqahtani
,
H.
Chen
,
C.
Gao
,
Z. D.
Chen
,
Z.
Wang
, and
S.
Li
,
Adv. Opt. Mater.
6
,
1701341
(
2018
).
4.
Q.
Wei
,
X.
Li
,
C.
Liang
,
Z.
Zhang
,
J.
Guo
,
G.
Hong
,
G.
Xing
, and
W.
Huang
,
Adv. Opt. Mater.
7
,
1900080
(
2019
).
5.
J. A.
Sichert
,
Y.
Tong
,
N.
Mutz
,
M.
Vollmer
,
S.
Fischer
,
K. Z.
Milowska
,
R.
García Cortadella
,
B.
Nickel
,
C.
Cardenas-Daw
,
J. K.
Stolarczyk
,
A. S.
Urban
, and
J.
Feldmann
,
Nano Lett.
15
,
6521
(
2015
).
6.
Y.
Tong
,
B. J.
Bohn
,
E.
Bladt
,
K.
Wang
,
P.
Müller-Buschbaum
,
S.
Bals
,
A. S.
Urban
,
L.
Polavarapu
, and
J.
Feldmann
,
Angew. Chem., Int. Ed.
56
,
13887
(
2017
).
7.
Y.
Tong
,
E.
Bladt
,
M. F.
Aygüler
,
A.
Manzi
,
K. Z.
Milowska
,
V. A.
Hintermayr
,
P.
Docampo
,
S.
Bals
,
A. S.
Urban
,
L.
Polavarapu
, and
J.
Feldmann
,
Angew. Chem., Int. Ed.
55
,
13887
13892
(
2016
).
8.
D.
Giovanni
,
H.
Ma
,
J.
Chua
,
M.
Grätzel
,
R.
Ramesh
,
S.
Mhaisalkar
,
N.
Mathews
, and
T. C.
Sum
,
Nano Lett.
15
,
1553
1558
(
2015
).
9.
P.
Odenthal
,
W.
Talmadge
,
N.
Gundlach
,
R.
Wang
,
C.
Zhang
,
D.
Sun
,
Z.-G.
Yu
,
Z.
Valy Vardeny
, and
Y. S.
Li
,
Nat. Phys.
13
,
894
899
(
2017
).
10.
R.
Wang
,
S.
Hu
,
X.
Yang
,
X.
Yan
,
H.
Li
, and
C.
Sheng
,
J. Mater. Chem. C
6
,
2989
2995
(
2018
).
11.
V. V.
Belykh
,
D. R.
Yakovlev
,
M. M.
Glazov
,
P. S.
Grigoryev
,
M.
Hussain
,
J.
Rautert
,
D. N.
Dirin
,
M. V.
Kovalenko
, and
M.
Bayer
,
Nat. Commun.
10
,
673
(
2019
).
12.
S.
Strohmair
,
A.
Dey
,
Y.
Tong
,
L.
Polavarapu
,
B. J.
Bohn
, and
J.
Feldmann
,
Nano Lett.
20
,
4724
4730
(
2020
).
13.
Y.-H.
Kim
,
Y.
Zhai
,
H.
Lu
,
X.
Pan
,
C.
Xiao
,
E. A.
Gaulding
,
S. P.
Harvey
,
J. J.
Berry
,
Z. V.
Vardeny
,
J. M.
Luther
, and
M. C.
Beard
,
Science
371
,
1129
1133
(
2021
).
14.
J.
Wang
,
C.
Zhang
,
H.
Liu
,
R.
McLaughlin
,
Y.
Zhai
,
S. R.
Vardeny
,
X.
Liu
,
S.
McGill
,
D.
Semenov
,
H.
Guo
,
R.
Tsuchikawa
,
V. V.
Deshpande
,
D.
Sun
, and
Z. V.
Vardeny
,
Nat. Commun.
10
,
129
(
2019
).
15.
M. O.
Nestoklon
,
S. V.
Goupalov
,
R. I.
Dzhioev
,
O. S.
Ken
,
V. L.
Korenev
,
Y. G.
Kusrayev
,
V. F.
Sapega
,
C.
de Weerd
,
L.
Gomez
,
T.
Gregorkiewicz
,
J.
Lin
,
K.
Suenaga
,
Y.
Fujiwara
,
L. B.
Matyushkin
, and
IN.
Yassievich
,
Phys. Rev. B
97
,
235304
(
2018
).
16.
Z.
Chen
,
G.
Dong
, and
J.
Qiu
,
Adv. Quantum Technol.
4
,
2100052
(
2021
).
17.
T.
Umebayashi
,
K.
Asai
,
T.
Kondo
, and
A.
Nakao
,
Phys. Rev. B
67
,
155405
(
2003
).
18.
K. T.
Butler
,
J. M.
Frost
, and
A.
Walsh
,
Mater. Horiz.
2
,
228
231
(
2015
).
19.
J.
Even
,
L.
Pedesseau
,
J.-M.
Jancu
, and
C.
Katan
,
J. Phys. Chem. Lett.
4
,
2999
3005
(
2013
).
20.
M. I.
Dyakonov
and
A.
Khaetskii
,
Spin Physics in Semiconductors
(
Springer
,
2008
), Vol.
157
.
21.
F.
Meier
and
B. P.
Zakharchenya
,
Optical Orientation
(
Elsevier
,
2012
).
22.
W.
Zhao
,
R.
Su
,
Y.
Huang
,
J.
Wu
,
C. F.
Fong
,
J.
Feng
, and
Q.
Xiong
,
Nat. Commun.
11
,
5665
(
2020
).
23.
D.
Giovanni
,
W. K.
Chong
,
Y. Y. F.
Liu
,
H. A.
Dewi
,
T.
Yin
,
Y.
Lekina
,
Z. X.
Shen
,
N.
Mathews
,
C. K.
Gan
, and
T. C.
Sum
,
Adv. Sci.
5
,
1800664
(
2018
).
24.
W.
Liang
,
Y.
Li
,
D.
Xiang
,
Y.
Han
,
Q.
Jiang
,
W.
Zhang
, and
K.
Wu
,
ACS Energy Lett.
6
,
1670
1676
(
2021
).
25.
M.
Shrivastava
,
M. I.
Bodnarchuk
,
A.
Hazarika
,
J. M.
Luther
,
M. C.
Beard
,
M. V.
Kovalenko
, and
K. V.
Adarsh
,
Adv. Opt. Mater.
8
,
2001016
(
2020
).
26.
W.
Tao
,
Q.
Zhou
, and
H.
Zhu
,
Sci. Adv.
6
,
eabb7132
(
2020
).
27.
Y.
Li
,
X.
Luo
,
Y.
Liu
,
X.
Lu
, and
K.
Wu
,
ACS Energy Lett.
5
,
1701
(
2020
).
28.
P. S.
Grigoryev
,
V. V.
Belykh
,
D. R.
Yakovlev
,
E.
Lhuillier
, and
M.
Bayer
,
Nano Lett.
21
,
8481
(
2021
).
29.
E.
Kirstein
,
D. R.
Yakovlev
,
E. A.
Zhukov
,
J.
Höcker
,
V.
Dyakonov
, and
M.
Bayer
, arXiv:2201.06867 (
2022
).
30.
E.
Kirstein
,
D. R.
Yakovlev
,
M. M.
Glazov
,
E.
Evers
,
E. A.
Zhukov
,
V. V.
Belykh
,
N. E.
Kopteva
,
D.
Kudlacik
,
O.
Nazarenko
,
D. N.
Dirin
,
M. V.
Kovalenko
, and
M.
Bayer
,
Adv. Mater.
34
,
2105263
(
2022
).
31.
A.
Haugeneder
,
M.
Neges
,
C.
Kallinger
,
W.
Spirkl
,
U.
Lemmer
,
J.
Feldmann
,
U.
Scherf
,
E.
Harth
,
A.
Gügel
, and
K.
Müllen
,
Phys. Rev. B
59
(
23
),
15346
(
1999
).
32.
M.
Hallermann
,
I.
Kriegel
,
E.
Da Como
,
J. M.
Berger
,
E.
von Hauff
, and
J.
Feldmann
,
Adv. Funct. Mater.
19
,
3662
(
2009
).
33.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
34.
E.-P.
Yao
,
B. J.
Bohn
,
Y.
Tong
,
H.
Huang
,
L.
Polavarapu
, and
J.
Feldmann
,
Adv. Opt. Mater.
7
,
1801776
(
2019
).
35.
J.
Feldmann
,
R.
Fischer
,
W.
Guß
,
E. O.
Göbel
,
S.
Schmitt-Rink
, and
W.
Krätschmer
,
Europhys. Lett.
20
,
553
(
1992
).
36.
W.
Guß
,
J.
Feldmann
,
E. O.
Göbel
,
C.
Taliani
,
H.
Mohn
,
W.
Müller
,
P.
Häußler
, and
H. U.
ter Meer
,
Phys. Rev. Lett.
72
,
2644
(
1994
).
37.
A.
Biebersdorf
,
R.
Dietmüller
,
A. S.
Susha
,
A. L.
Rogach
,
S. K.
Poznyak
,
D. V.
Talapin
,
H.
Weller
,
T. A.
Klar
, and
J.
Feldmann
,
Nano Lett.
6
(
7
),
1559
(
2006
).
38.
N.
Song
,
H.
Zhu
,
S.
Jin
,
W.
Zhan
, and
T.
Lian
,
ACS Nano
5
(
1
),
613
(
2011
).
39.
J. H.
Bang
and
P. V.
Kamat
,
ACS Nano
5
(
12
),
9421
(
2011
).
40.
S.
McKechnie
,
J. M.
Frost
,
D.
Pashov
,
P.
Azarhoosh
,
A.
Walsh
, and
M.
van Schilfgaarde
,
Phys. Rev. B
98
,
085108
(
2018
).
41.
Q.
Zhao
,
A.
Hazarika
,
L. T.
Schelhas
,
J.
Liu
,
E. A.
Gaulding
,
G.
Li
,
M.
Zhang
,
M. F.
Toney
,
P. C.
Sercel
, and
J. M.
Luther
,
ACS Energy Lett.
5
,
238
(
2020
).

Supplementary Material

You do not currently have access to this content.