Increasing the injection efficiency, a critical factor constraining the reduction in threshold current in AlGaN-based deep-ultraviolet laser diodes, represents one of the paramount remaining technical challenges. In this study, the impact of compositionally graded layers that were unintentionally formed at the interface between the p-cladding and the core layer on carrier injection efficiency was analyzed. Experimental evaluations using laser diodes have shown that the elimination of an unintentionally formed layer increases the injection efficiency above the threshold current, from the conventional 3% to 13%. It has been postulated that the electron overflow toward the p-side exerts a substantial deleterious effect on the injection efficiency. An improvement in this aspect is achieved by increasing the electron-blocking capability due to the improved interface abruptness between the p-cladding layer and the core layer. The lasing threshold was strongly reduced, and characteristic temperature increased from 76 to 107 K for the improved devices.

1.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
, “
A 271.8 nm deep-ultraviolet laser diode for room temperature operation
,”
Appl. Phys. Express
12
,
124003
(
2019
).
2.
K.
Sato
,
S.
Yasue
,
K.
Yamada
,
S.
Tanaka
,
T.
Omori
,
S.
Ishizuka
,
S.
Teramura
,
Y.
Ogino
,
S.
Iwayama
,
H.
Miyake
,
M.
Iwaya
,
T.
Takeuchi
,
S.
Kamiyama
, and
I.
Akasaki
, “
Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al0.6Ga0.4N/AlN/sapphire
,”
Appl. Phys. Express
13
,
031004
(
2020
).
3.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
C.
Sasaoka
,
L. J.
Schowalter
, and
H.
Amano
, “
Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing
,”
Appl. Phys. Lett.
121
,
222103
(
2022
).
4.
R.
Ishii
,
A.
Yoshikawa
,
K.
Nagase
,
M.
Funato
, and
Y.
Kawakami
, “
Temperature-dependent electroluminescence study on 265-nm AlGaN-based deep-ultraviolet light-emitting diodes grown on AlN substrates
,”
AIP Adv.
10
,
125014
(
2020
).
5.
A.
Muhin
,
M.
Guttmann
,
V.
Montag
,
N.
Susilo
,
E.
Ziffer
,
L.
Sulmoni
,
S.
Hagedorn
,
N.
Lobo-Ploch
,
J.
Rass
,
L.
Cancellara
,
S.
Wu
,
T.
Wernicke
, and
M.
Kneissl
, “
Radiative recombination and carrier injection efficiencies in 265 nm deep ultraviolet light-emitting diodes grown on AlN/sapphire templates with different defect densities
,”
Phys. Status Solidi A
220
,
2200458
(
2023
).
6.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
, “
Design and characterization of a low-optical-loss UV-C laser diode
,”
Jpn. J. Appl. Phys., Part 1
59
,
094001
(
2020
).
7.
K.
Sato
,
T.
Omori
,
K.
Yamada
,
S.
Tanaka
,
S.
Ishizuka
,
S.
Teramura
,
S.
Iwayama
,
M.
Iwaya
,
H.
Miyake
,
T.
Takeuchi
,
S.
Kamiyama
, and
I.
Akasaki
, “
Analysis of carrier injection efficiency of AlGaN UV-B laser diodes based on the relationship between threshold current density and cavity length
,”
Jpn. J. Appl. Phys., Part 1
60
,
074002
(
2021
).
8.
E. F.
Schubert
,
J.
Cho
, and
J. K.
Kim
, “
Light-emitting diodes
,” in
Kirk-Othmer Encyclopedia of Chemical Technology
, 1st ed., edited by
R. E.
Kirk
and
D. F.
Othmer
(
Wiley
,
2015
).
9.
S.-H.
Han
,
D.-Y.
Lee
,
S.-J.
Lee
,
C.-Y.
Cho
,
M.-K.
Kwon
,
S. P.
Lee
,
D. Y.
Noh
,
D.-J.
Kim
,
Y. C.
Kim
, and
S.-J.
Park
, “
Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes
,”
Appl. Phys. Lett.
94
,
231123
(
2009
).
10.
D.
Jena
,
S.
Heikman
,
D.
Green
,
D.
Buttari
,
R.
Coffie
,
H.
Xing
,
S.
Keller
,
S.
DenBaars
,
J. S.
Speck
,
U. K.
Mishra
, and
I.
Smorchkova
, “
Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys
,”
Appl. Phys. Lett.
81
,
4395
4397
(
2002
).
11.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
, “
Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures
,”
Science
327
,
60
64
(
2010
).
12.
Y.-L.
Tsai
,
C.-L.
Wang
,
P.-H.
Lin
,
W.-T.
Liao
, and
J.-R.
Gong
, “
Observation of compositional pulling phenomenon in AlxGa1−xN (0.4 < x < 1.0) films grown on (0001) sapphire
,”
Appl. Phys. Lett.
82
,
31
33
(
2003
).
13.
H.
Lin
,
Y.
Chen
,
T.
Lin
,
C.
Shih
,
K.
Liu
, and
N.
Chen
, “
Direct evidence of compositional pulling effect in Al Ga1-N epilayers
,”
J. Cryst. Growth
290
,
225
228
(
2006
).
14.
X. L.
Ji
,
R. L.
Jiang
,
B.
Liu
,
Z. L.
Xie
,
J. J.
Zhou
,
L.
Li
,
P.
Han
,
R.
Zhang
,
Y. D.
Zheng
, and
J. G.
Zheng
, “
Structural characterization of AlGaN/AlN Bragg reflector grown by metalorganic chemical vapor deposition: Structural characterization of AlGaN/AlN Bragg reflector grown by MOCVD
,”
Phys. Status Solidi A
205
,
1572
1574
(
2008
).
15.
B.
Liu
,
R.
Zhang
,
J. G.
Zheng
,
X. L.
Ji
,
D. Y.
Fu
,
Z. L.
Xie
,
D. J.
Chen
,
P.
Chen
,
R. L.
Jiang
, and
Y. D.
Zheng
, “
Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors
,”
Appl. Phys. Lett.
98
,
261916
(
2011
).
16.
C.
He
,
Z.
Qin
,
F.
Xu
,
L.
Zhang
,
J.
Wang
,
M.
Hou
,
S.
Zhang
,
X.
Wang
,
W.
Ge
, and
B.
Shen
, “
Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system
,”
Sci. Rep.
6
,
25124
(
2016
).
17.
J.
Houston Dycus
,
S.
Washiyama
,
T. B.
Eldred
,
Y.
Guan
,
R.
Kirste
,
S.
Mita
,
Z.
Sitar
,
R.
Collazo
, and
J. M.
LeBeau
, “
The role of transient surface morphology on composition control in AlGaN layers and wells
,”
Appl. Phys. Lett.
114
,
031602
(
2019
).
18.
M.
Nemoz
,
F.
Semond
,
S.
Rennesson
,
M.
Leroux
,
S.
Bouchoule
,
G.
Patriarche
, and
J.
Zuniga-Perez
, “
Interdiffusion of Al and Ga in AlN/AlGaN superlattices grown by ammonia-assisted molecular beam epitaxy
,”
Superlattices Microstruct.
150
,
106801
(
2021
).
19.
R.
Kondo
,
A.
Yabutani
,
T.
Omori
,
K.
Yamada
,
E.
Matsubara
,
R.
Hasegawa
,
T.
Nishibayashi
,
S.
Iwayama
,
T.
Takeuchi
,
S.
Kamiyama
,
H.
Miyake
, and
M.
Iwaya
, “
Demonstration of ultraviolet-B AlGaN-based laser diode operation with a peak light output power of 150 mW by improving injection efficiency through polarization charge modulation
,”
Appl. Phys. Lett.
121
,
253501
(
2022
).
20.
N.
Grandjean
,
J.
Massies
, and
M.
Leroux
, “
Monte Carlo simulation of In surface segregation during the growth of InxGa1−xAs on GaAs(001)
,”
Phys. Rev. B
53
,
998
1001
(
1996
).
21.
R.
Kazarinov
and
G.
Belenky
, “
Novel design of AlGaInAs-InP lasers operating at 1.3 μm
,”
IEEE J. Quantum Electron.
31
,
423
426
(
1995
).
22.
N.
Ohnoki
,
G.
Okazaki
,
F.
Koyama
, and
K.
Iga
, “
Record high characteristic temperature (To = 122 K) of 1.55 μm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier
,”
Electron. Lett.
35
,
51
(
1999
).
You do not currently have access to this content.