The ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZTO) ceramic particles were immobilized in a polymer matrix of polyvinylidene difluoride (PVDF) in order to fabricate flexible and stable composite films for the treatment of water using the piezocatalysis process. The content of BCZTO in BCZTO/PVDF composite films was 0, 5, and 10 wt. % of PVDF. The presence of the BCZTO phase in PVDF composites was confirmed using x-ray diffraction, Raman spectroscopy, and a scanning electron microscope. Piezocatalytic activity of BCZTO/PVDF composite films was investigated by monitoring the degradation of various organic dyes, pharmaceuticals, and bacteria present in the water. The highest values of dye degradation were achieved in 10 wt. % BCZTO/PVDF composite films, where the model dyes named methylene blue, Rhodamine B, and methyl orange dyes were degraded by ∼91%, ∼86%, and 90% after the sonication for 180 min, respectively. The dye degradation performance using piezocatalysis was found to be repeatable and consistent for up to five cycles. Hydroxyl radical (OH) was identified to be the main reactive species behind piezocatalytic dye degradation. An increment in dye degradation performance was observed with an increment in the power of the ultrasonicator during piezocatalysis. In addition, 10 wt. % BCZTO/PVDF composite films displayed 59% and 50% degradation of pharmaceutical antibiotics named tetracycline and ciprofloxacin, respectively, within 180 min of sonication, respectively. Also, more than 99.99% E. coli bacteria were inactivated using 10 wt. % BCZTO/PVDF composite films under 180 min of sonication treatment and showed a bacterial log reduction of 3.4. These promising results indicate the 10 wt. % BCZTO/PVDF composite film as a potential candidate for the treatment of water using piezocatalysis technology.

1.
Z.
Liang
,
C.-F.
Yan
,
S.
Rtimi
, and
J.
Bandara
,
Appl. Catal. B: Environ.
241
,
256
269
(
2019
).
2.
S.
Tu
,
Y.
Guo
,
Y.
Zhang
,
C.
Hu
,
T.
Zhang
,
T.
Ma
, and
H.
Huang
,
Adv. Funct. Mater.
30
,
2005158
(
2020
).
3.
M.
Wang
,
B.
Wang
,
F.
Huang
, and
Z.
Lin
,
Angew. Chem. Int. Ed.
58
,
7526
7536
(
2019
).
4.
W.
Qian
,
K.
Zhao
,
D.
Zhang
,
C. R.
Bowen
,
Y.
Wang
, and
Y.
Yang
,
ACS Appl. Mater. Interfaces
11
,
27862
27869
(
2019
).
5.
S.
Xu
,
W.
Qian
,
D.
Zhang
,
X.
Zhao
,
X.
Zhang
,
C.
Li
,
C. R.
Bowen
, and
Y.
Yang
,
Nano Energy
77
,
105305
(
2020
).
6.
Y.
Chen
,
X.
Deng
,
J.
Wen
,
J.
Zhu
, and
Z.
Bian
,
Appl. Catal. B: Environ.
258
,
118024
(
2019
).
7.
Y.
Wang
,
X.
Wen
,
Y.
Jia
,
M.
Huang
,
F.
Wang
,
X.
Zhang
,
Y.
Bai
,
G.
Yuan
, and
Y.
Wang
,
Nat. Commun.
11
, 1–11 (
2020
).
8.
Y.
Feng
,
L.
Ling
,
Y.
Wang
,
Z.
Xu
,
F.
Cao
,
H.
Li
, and
Z.
Bian
,
Nano Energy
40
,
481
486
(
2017
).
9.
X.
Xu
,
Y.
Jia
,
L.
Xiao
, and
Z.
Wu
,
Chemosphere
193
,
1143
1148
(
2018
).
10.
S.
Li
,
Z.
Zhao
,
J.
Zhao
,
Z.
Zhang
,
X.
Li
, and
J.
Zhang
,
ACS Appl. Nano Mater.
3
,
1063
1079
(
2020
).
11.
G.
Singh
,
M.
Sharma
, and
R.
Vaish
,
Commun. Mater.
1
,
100
(
2020
).
12.
G.
Singh
,
M.
Sharma
, and
R.
Vaish
,
Chem. Eng. J.
407
,
126971
(
2021
).
13.
Y.
Zhang
,
Q.
Chi
,
L.
Liu
,
T.
Zhang
,
C.
Zhang
,
Q.
Chen
,
X.
Wang
, and
Q.
Lei
,
ACS Appl. Energy Mater.
1
,
6320
6329
(
2018
).
14.
Q.
Chi
,
T.
Ma
,
Y.
Zhang
,
Q.
Chen
,
C.
Zhang
,
Y.
Cui
,
T.
Zhang
,
J.
Lin
,
X.
Wang
, and
Q.
Lei
,
ACS Sustain. Chem. Eng.
6
,
403
412
(
2018
).
15.
Y.
Xie
,
J.
Wang
,
Y.
Yu
,
W.
Jiang
, and
Z.
Zhang
,
Appl. Surf. Sci.
440
,
1150
1158
(
2018
).
16.
J.
Lao
,
H.
Xie
,
Z.
Shi
,
G.
Li
,
B.
Li
,
G.-H.
Hu
,
Q.
Yang
, and
C.
Xiong
,
ACS Sustain. Chem. Eng.
6
,
7151
7158
(
2018
).
17.
L.
Wu
,
K.
Wu
,
C.
Lei
,
D.
Liu
,
R.
Du
,
F.
Chen
, and
Q.
Fu
,
J. Mater. Chem. A
7
,
7664
7674
(
2019
).
18.
M.
Sharma
,
G.
Singh
, and
R.
Vaish
,
Nanotechnology
32
,
145716
(
2021
).
19.
M.
Sharma
,
V. P.
Singh
,
S.
Kumar
, and
R.
Vaish
,
J. Appl. Phys.
127
,
135103
(
2020
).
20.
Y.
Zhang
,
Y.
Zhang
,
X.
Xue
,
C.
Cui
,
B.
He
,
Y.
Nie
,
P.
Deng
, and
Z.
Lin Wang
,
Nanotechnology
25
,
105401
(
2014
).
21.
S.
Patel
,
D.
Sharma
,
A.
Singh
, and
R.
Vaish
,
J. Materiomics
2
,
75
(
2016
).
22.
M.
Sanlialp
,
V. V.
Shvartsman
,
M.
Acosta
, and
D. C.
Lupascu
,
J. Am. Ceram. Soc.
99
,
4022
4030
(
2016
).
23.
M.
Sharma
and
R.
Vaish
,
J. Am. Ceram. Soc.
104
,
45
56
(
2021
).
24.
M.
Sharma
,
A.
Chauhan
, and
R.
Vaish
,
Mater. Res. Bull.
137
,
111205
(
2021
).
25.
M.
Sharma
,
A.
Halder
, and
R.
Vaish
,
Mater. Res. Bull.
122
,
110647
(
2020
).
26.
D.
Lu
,
Y.
Zhang
,
S.
Lin
,
L.
Wang
, and
C.
Wang
,
J. Alloys Compd.
579
,
366
(
2013
).
27.
R.
Jiang
,
D.
Wu
,
G.
Lu
,
Z.
Yan
, and
J.
Liu
,
Chemosphere
227
,
82
92
(
2019
).
28.
Y.
Park
,
Y.
Na
,
D.
Pradhan
,
B.-K.
Min
, and
Y.
Sohn
,
CrystEngComm
16
,
3155
3167
(
2014
).
29.
J.
Feng
,
Y.
Fu
,
X.
Liu
,
S.
Tian
,
S.
Lan
, and
Y.
Xiong
,
ACS Sustain. Chem. Eng.
6
,
6032
6041
(
2018
).
30.
B.
Bagchi
,
N. A.
Hoque
,
N.
Janowicz
,
S.
Das
, and
M. K.
Tiwari
,
Nano Energy
78
,
105339
(
2020
).
31.
N. A.
Hoque
,
P.
Thakur
,
S.
Roy
,
A.
Kool
,
B.
Bagchi
,
P.
Biswas
,
M. M.
Saikh
,
F.
Khatun
,
S.
Das
, and
P. P.
Ray
,
ACS Appl. Mater. Interfaces
9
,
23048
23059
(
2017
).
32.
S.
Lotfian
,
C.
Giraudmaillet
,
A.
Yoosefinejad
,
V. K.
Thakur
, and
H. Y.
Nezhad
,
ACS Omega
3
,
8891
8902
(
2018
).
33.
P.
Singh
,
H.
Borkar
,
B. P.
Singh
,
V. N.
Singh
, and
A.
Kumar
,
AIP Adv.
4
,
087117
(
2014
).
34.
A. S.
Elmezayyen
,
J.
Zheng
, and
C.
Xu
,
Polym. Bull.
(published online, 2020).
35.
L.
Lu
,
W.
Ding
,
J.
Liu
, and
B.
Yang
,
Nano Energy
78
,
105251
(
2020
).
36.
Q.
Zhao
,
L.
Yang
,
K.
Chen
,
Y.
Ma
,
Q.
Peng
,
H.
Ji
, and
J.
Qiu
,
Compos. Sci. Technol.
199
,
108330
(
2020
).
37.
A.
Peleš
,
O.
Aleksić
,
V. P.
Pavlović
,
V.
Djoković
,
R.
Dojčilović
,
Z.
Nikolić
,
F.
Marinković
,
M.
Mitrić
,
V.
Blagojević
,
B.
Vlahović
, and
V. B.
Pavlović
,
Phys. Scr.
93
, 105801 (
2018
)
38.
J.
Pokorńy
,
U. M.
Pasha
,
L.
Ben
,
O. P.
Thakur
,
D. C.
Sinclair
, and
I. M.
Reaney
,
J. Appl. Phys.
109
,
114110
(
2011
).
39.
V.
Sreenivas Puli
,
D. K.
Pradhan
,
W.
Pérez
, and
R. S.
Katiyar
,
J. Phys. Chem. Solids
74
,
466
475
(
2013
).
40.
T. D.
Raju
,
S.
Veeralingam
, and
S.
Badhulika
,
ACS Appl. Nano Mater.
3
,
4777
4787
(
2020
).
41.
T. A.
Dahl
,
W. R.
Midden
, and
P. E.
Hartman
,
J. Bacteriol.
171
,
2188
2194
(
1989
).
42.
S.
Kumar
,
M.
Sharma
,
S.
Powar
,
E. N.
Kabachkov
, and
R.
Vaish
,
J. Eur. Ceram. Soc.
39
,
2915
2922
(
2019
).
43.
B.
Ezraty
,
A.
Gennaris
,
F.
Barras
, and
J.-F.
Collet
,
Nat. Rev. Microbiol.
15
,
385
396
(
2017
).
44.
G.
Tezcanli-Güyer
and
N. H.
Ince
,
Ultrasonics
42(1–9)
, 603–609 (
2004
).
45.
N.
Ghows
and
M. H.
Entezari
,
Ultrason. Sonochem.
20
,
386
394
(
2013
).

Supplementary Material

You do not currently have access to this content.