This paper presents theoretical formalism and some results of the collision-induced absorption (CIA) spectral simulation based on the classical trajectory analysis. Our consideration relies on the use of ab initio potential energy and dipole moment surfaces for two interacting rigid monomers. Rigorous intermolecular Hamiltonian is represented and used in the body-fixed reference frame. The complete set of dynamical equations with Boltzmann-weighted initial conditions is solved to render a large number of classical trajectories. The spectral shape is calculated as an ensemble-averaged Fourier spectrum issued from the time-dependent induced dipole along individual scattering trajectories. Considering a pair of N2 molecules as an example, we have calculated the rototranslational CIA band profiles at T = 78, 89, 109, 129, 149, 179, 228, 300, and 343 K. The classical trajectory-based spectral shape was corrected to satisfy the quantum principle of detailed balance. Good accuracy of our semiclassical approach was demonstrated by comparison with available experimental data as well as with results of the previously published purely quantum simulation by Karman et al. [J. Chem. Phys. 142, 084306 (2015)] in which the same ab initio calculated N2–N2 potential energy and induced dipole moment surfaces were used.

1.
T.
Karman
,
I. E.
Gordon
,
Ad.
van der Avoird
,
Y. I.
Baranov
,
C.
Boulet
,
B. J.
Drouin
,
G. C.
Groenenboom
,
M.
Gustafsson
,
J.-M.
Hartmann
,
R. L.
Kurucz
,
L. S.
Rothman
,
K.
Sun
,
K.
Sung
,
R.
Thalman
,
H.
Tran
,
E. H.
Wishnow
,
R.
Wordsworth
,
A. A.
Vigasin
,
R.
Volkamer
, and
W. J.
van der Zande
,
Icarus
328
,
160
175
(
2019
).
2.
M.
Abel
and
L.
Frommhold
,
Can. J. Phys.
91
,
857
869
(
2013
).
3.
R.
Wordsworth
,
Y.
Kalugina
,
S.
Lokshtanov
,
A.
Vigasin
,
B.
Ehlmann
,
J.
Head
,
C.
Sanders
, and
H.
Wang
,
Geophys. Res. Lett.
44
,
665
671
, (
2017
).
4.
B.
Bézard
and
S.
Vinatier
, “
On the H2 abundance and ortho-to-para ratio in Titan’s troposphere
,”
Icarus
(published online).
5.
T.
Karman
,
A.
van der Avoird
, and
G. C.
Groenenboom
,
J. Chem. Phys.
142
,
084305
(
2015
).
6.
T.
Karman
,
E.
Miliordos
,
K. L.
Hunt
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
142
,
084306
(
2015
), supplementary material for ab initio points and expansion coefficients of the N2–N2 PES and IDS.
7.
T.
Karman
,
M. A.
Koenis
,
A.
Banerjee
,
D. H.
Parker
,
I. E.
Gordon
,
A.
Avoird
,
W. J.
Zande
, and
G. C.
Groenenboom
,
Nat. Chem.
10
,
549
(
2018
).
8.
T.
Karman
, “Collision-induced absorption by oxygen and nitrogen molecules,” Ph.D. thesis, Radboud University, 2018.
9.
W.
Fakhardji
and
M.
Gustafsson
,
J. Phys.: Conf. Ser.
810
,
012031
(
2017
).
10.
A.
Borysow
and
L.
Frommhold
,
Astrophys. J.
311
,
1043
1057
(
1986
).
11.
J.-M.
Hartmann
,
C.
Boulet
, and
D.
Jacquemart
,
J. Chem. Phys.
134
,
094316
(
2011
).
12.
J.-M.
Hartmann
,
C.
Boulet
, and
G. C.
Toon
,
J. Geophys. Res.: Atmos.
122
,
2419
2428
, (
2017
).
13.
I.
Buryak
,
L.
Frommhold
, and
A. A.
Vigasin
,
J. Chem. Phys.
140
,
154302
(
2014
).
14.
D. V.
Oparin
,
N. N.
Filippov
,
I. M.
Grigoriev
, and
A. P.
Kouzov
,
J. Quant. Spectrosc. Radiat. Transfer
196
,
87
93
(
2017
).
16.
J.
Makarewicz
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
,
Chichester
,
2000
), pp.
391
429
.
17.
E. B.
Wilson
, Jr.
and
J. B.
Howard
,
J. Chem. Phys.
4
,
260
268
(
1936
).
18.
J. K.
Watson
,
Mol. Phys.
15
,
479
490
(
1968
).
19.
J. K.
Watson
,
Mol. Phys.
19
,
465
487
(
1970
).
20.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Courier Corporation
,
1980
).
21.
J. E.
Hadder
and
J. H.
Frederick
,
J. Chem. Phys.
97
,
3500
3520
(
1992
).
22.
B. T.
Sutcliffe
, in
Quantum Dynamics of Molecules: The New Experimental Challenge to Theorists
, edited by
R. G.
Wooley
(
Plenum Press
,
NY
,
1980
), pp.
1
37
.
23.
J.
Tennyson
,
Comput. Phys. Rep.
4
,
1
36
(
1986
).
24.
H.
Goldstein
,
C. P.
Poole
, and
J. L.
Safko
,
Classical Mechanics
(
Addison Wesley Publishing Company
,
San Francisco
,
2001
).
25.
A. A.
Vigasin
,
Infrared Phys.
32
,
461
(
1991
).
26.
A. A.
Vigasin
, in
Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere
, edited by
C.
Camy-Peyret
and
A. A.
Vigasin
(
Springer
,
Dordrecht
,
2003
), pp.
23
47
.
27.
S. V.
Petrov
and
S. E.
Lokshtanov
,
J. Exp. Theor. Phys.
121
,
186
193
(
2015
).
28.
S. V.
Petrov
and
S. E.
Lokshtanov
,
Russ. J. Phys. Chem. A
76
,
981
986
(
2002
).
29.
S. V.
Petrov
and
B. M.
Kozlovskii
,
J. Mol. Spectrosc.
243
,
245
252
(
2007
).
30.
D. N.
Chistikov
,
A. A.
Finenko
,
S. E.
Lokshtanov
,
S. V.
Petrov
, and
A. A.
Vigasin
,
J. Chem. Phys.
149
,
194304
(
2018
).
31.
K. B.
Petersen
and
M. S.
Pedersen
,
The Matrix Cookbook
(
Technical University of Denmark
,
2008
).
32.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
,
ACM Trans. Math. Software
31
,
363
396
(
2005
).
33.
S. V.
Ivanov
, in
Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere
, edited by
C.
Camy-Peyret
and
A. A.
Vigasin
(
Springer
,
Dordrecht
,
2003
), pp.
49
64
.
34.
See https://www.mcs.anl.gov/research/projects/mpi/ for information about Message Passage Interface standard and implementations.
35.
L.
Frommhold
,
Collision Induced Absorption in Gases
(
Cambridge University Press
,
2006
).
36.
J.
Van Kranendonk
and
D. M.
Gass
,
Can. J. Phys.
51
,
2428
2440
(
1973
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics
, Volume 1 of Mechanics (
Oxford
,
1960
).
38.
I. R.
Dagg
,
A.
Anderson
,
S.
Yan
,
W.
Smith
, and
L. A. A.
Read
,
Can. J. Phys.
63
,
625
631
(
1985
).
39.
N. W. B.
Stone
,
L. A. A.
Read
,
A.
Anderson
,
I. R.
Dagg
, and
W.
Smith
,
Can. J. Phys.
62
,
338
347
(
1984
).
40.
U.
Buontempo
,
S.
Cunsolo
,
G.
Jacucci
, and
J. J.
Weis
,
J. Chem. Phys.
63
,
2570
2576
(
1975
).
41.
B.
Bussery-Honvault
and
J.-M.
Hartmann
,
J. Chem. Phys.
140
,
054309
(
2014
).
42.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer Science and Business Media
,
2013
).
43.
F. R.
Gantmacher
,
Lectures Analytical Mechanics
(
Beekman Books, Inc.
,
1975
).
44.
D. N.
Chistikov
,
A. A.
Finenko
,
Y. N.
Kalugina
,
S. E.
Lokshtanov
,
S. V.
Petrov
, and
A. A.
Vigasin
, “
Simulation of collision-induced absorption spectra based on classical trajectories and ab initio potential and induced dipole surfaces. II. Case study of CO2–CO2 rototranslational band
,” (in preparation).

Supplementary Material

You do not currently have access to this content.