Both the efficiency and capability of the seniority number truncated valence bond (VB) methods are highly improved by using our recently proposed extension of Malmqvist’s algorithm for the reciprocal transformation of many-electron bases constructed by nonorthogonal orbitals [Zhou, Chen, and Wu, J. Chem. Phys. 149(4), 044111 (2018)] and by the adoption of the direct technique in solving the generalized eigenvalue problem. Due to the compactness of the wave function that benefited from seniority number restriction, the memory need and computational cost for energy evaluation and orbital optimization in valence bond self-consistent field calculation are largely reduced. The last obstacle in nonorthogonal orbital based ab initio VB calculation is thus removed. Consequently, we can accomplish seniority number truncated VB calculation at the same computational scaling as that of the most general configuration selected multiconfigurational self-consistent field with a memory cost much less than the corresponding complete active space self-consistent field (CASSCF). Test on Hn string molecules shows that the seniority number truncated VB calculation maintains the majority of static correlation by using a more compact wave function than CASSCF.

1.
W.
Heitler
and
F.
London
,
Z. Phys.
44
(
6-7
),
455
472
(
1927
).
2.
L.
Pauling
,
The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry
(
Cornell University Press
,
1960
).
3.
S. S.
Shaik
and
P. C.
Hiberty
,
A Chemist’s Guide to Valence Bond Theory
(
John Wiley & Sons
,
2007
),
4.
W.
Wu
,
P.
Su
,
S.
Shaik
, and
P. C.
Hiberty
,
Chem. Rev.
111
(
11
),
7557
7593
(
2011
).
5.
P.
Ring
and
P.
Schuck
,
The Nuclear Many-Body Problem
(
Springer-Verlag
,
New York
,
1980
).
6.
D. S.
Koltun
and
J. M.
Eisenberg
,
Quantum Mechanics of Many Degrees of Freedom
(
Wiley
,
1988
).
7.
L.
Bytautas
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
,
J. K.
Ellis
, and
G. E.
Scuseria
,
J. Chem. Phys.
135
(
4
),
044119
(
2011
).
8.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
, and
O. B.
Oña
,
J. Chem. Phys.
140
(
23
),
234103
(
2014
).
9.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
G. E.
Massaccesi
, and
O. B.
Oña
,
J. Chem. Phys.
139
(
8
),
084103
(
2013
).
10.
D. R.
Alcoba
,
A.
Torre
,
L.
Lain
,
O. B.
Oña
,
P.
Capuzzi
,
M.
Van Raemdonck
,
P.
Bultinck
, and
D.
Van Neck
,
J. Chem. Phys.
141
(
24
),
244118
(
2014
).
11.
Z.
Chen
,
C.
Zhou
, and
W.
Wu
,
J. Chem. Theory Comput.
11
(
9
),
4102
4108
(
2015
).
12.
J. H.
van Lenthe
and
G. G.
Balint-Kurti
,
Chem. Phys. Lett.
76
(
1
),
138
142
(
1980
).
13.
J. H.
van Lenthe
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
78
(
9
),
5699
5713
(
1983
).
14.
Z.
Chen
,
X.
Chen
, and
W.
Wu
,
J. Chem. Phys.
138
,
164119
(
2013
).
15.
Z.
Chen
,
X.
Chen
, and
W.
Wu
,
J. Chem. Phys.
138
(
16
),
164120
(
2013
).
16.
Z.
Chen
,
X.
Chen
,
F.
Ying
,
J.
Gu
,
H.
Zhang
, and
W.
Wu
,
J. Chem. Phys.
141
(
13
),
134118
(
2014
).
17.
X.
Chen
,
Z.
Chen
, and
W.
Wu
,
J. Chem. Phys.
141
(
19
),
194113
(
2014
).
18.
J.
Gerratt
and
W.
Lipscomb
,
Proc. Natl. Acad. Sci. U. S. A.
59
(
2
),
332
(
1968
).
19.
T.
Thorsteinsson
and
D. L.
Cooper
,
Theor. Chim. Acta
94
(
4
),
233
245
(
1996
).
20.
D. L.
Cooper
,
T.
Thorsteinsson
, and
J.
Gerratt
,
Int. J. Quantum Chem.
65
(
5
),
439
451
(
1997
).
21.
T.
Thorsteinsson
,
D. L.
Cooper
,
J.
Gerratt
,
P. B.
Karadakov
, and
M.
Raimondi
,
Theor. Chim. Acta
93
(
6
),
343
366
(
1996
).
22.
T.
Thorsteinsson
,
D. L.
Cooper
,
J.
Gerratt
, and
M.
Raimondi
,
Theor. Chim. Acta
95
(
3-4
),
131
150
(
1997
).
23.
T.
Thorsteinsson
,
D. L.
Cooper
,
J.
Gerratt
, and
M.
Raimondi
,
Mol. Eng.
7
(
1
),
67
85
(
1997
).
24.
K.
Hirao
,
H.
Nakano
, and
K.
Nakayama
,
J. Chem. Phys.
107
(
23
),
9966
9974
(
1997
).
25.
K.
Hirao
,
H.
Nakano
,
K.
Nakayama
, and
M.
Dupuis
,
J. Chem. Phys.
105
(
20
),
9227
(
1996
).
26.
J.
Song
,
Z.
Chen
,
S.
Shaik
, and
W.
Wu
,
J. Comput. Chem.
34
(
1
),
38
48
(
2013
).
27.
W. A.
Goddard
 III
,
Phys. Rev.
157
(
1
),
73
(
1967
).
28.
W. A.
Goddard
 III
,
J. Chem. Phys.
48
,
450
(
1968
).
29.
P. O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
30.
M.
Moshinsky
and
T.
Seligman
,
Ann. Phys.
66
(
1
),
311
334
(
1971
).
31.
A.
Cantu
,
D.
Klein
,
F.
Matsen
, and
T.
Seligman
,
Theor. Chim. Acta
38
(
4
),
341
354
(
1975
).
32.
J.
Norbeck
and
R.
McWeeny
,
Chem. Phys. Lett.
34
(
2
),
206
210
(
1975
).
33.
J. J.
McDouall
,
Theor. Chim. Acta
83
(
5-6
),
339
350
(
1992
).
34.
P. Å.
Malmqvist
,
Int. J. Quantum Chem.
30
(
4
),
479
494
(
1986
).
35.
J.
Olsen
,
J. Chem. Phys.
143
(
11
),
114102
(
2015
).
36.
C.
Zhou
,
Z.
Chen
, and
W.
Wu
,
J. Chem. Phys.
149
(
4
),
044111
(
2018
).
37.
C. A.
Jiménez-Hoyos
,
R.
Rodríguez-Guzmán
, and
G. E.
Scuseria
,
Phys. Rev. A
86
,
052102
(
2012
).
38.
R.
Balian
and
E.
Brezin
,
Nuovo Cimento B
64
,
37
(
1969
).
39.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
Chichester
,
2000
).
40.
W.
Wu
,
A.
Wu
,
Y.
Mo
,
M.
Lin
, and
Q.
Zhang
,
Int. J. Quantum Chem.
67
,
287
(
1998
).
41.
W.
Wu
,
Y.
Mo
,
Z.
Cao
, and
Q.
Zhang
, in
Valence Bond Theory
, edited by
D. L.
Cooper
and
D. J.
Klein
(
Elsevier
,
Amsterdam
,
2002
), Vol. 10, pp.
143
185
.
42.
J.
Olsen
,
M. R.
Godefroid
,
P.
Jönsson
,
P. Å.
Malmqvist
, and
C. F.
Fischer
,
Phys. Rev. E
52
(
4
),
4499
(
1995
).
43.
L.
Song
,
Y.
Mo
,
Q.
Zhang
, and
W.
Wu
,
J. Comput. Chem.
26
(
5
),
514
521
(
2005
).
44.
Z.
Chen
,
F.
Ying
,
X.
Chen
,
J.
Song
,
P.
Su
,
L.
Song
,
Y.
Mo
,
Q.
Zhang
, and
W.
Wu
,
Int. J. Quantum Chem.
115
(
11
),
731
737
(
2015
).
45.
E. R.
Davidson
,
J. Comput. Phys.
17
(
1
),
87
94
(
1975
).
46.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
(
1
),
503
528
(
1989
).
47.
C.
Zhou
,
Z.
Chen
, and
W.
Wu
,
Comput. Theor. Chem.
1116
,
86
91
(
2017
).
48.
Z.
Chen
and
R.
Hoffmann
,
J. Chem. Phys.
137
(
1
),
014108
(
2012
).
49.
G. E.
Scuseria
and
T.
Tsuchimochi
,
J. Chem. Phys.
131
(
16
),
164119
(
2009
).
50.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
(
14
),
144116
(
2008
).
51.
V. A.
Rassolov
and
F.
Xu
,
J. Chem. Phys.
127
(
4
),
044104
(
2007
).
52.
G.
Gidofalvi
and
D. A.
Mazziotti
,
J. Chem. Phys.
129
(
13
),
134108
(
2008
).
53.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
,
J. Chem. Phys.
125
(
14
),
144101
(
2006
).
54.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
(
8
),
5792
5809
(
1994
).
55.
J. A.
Parkhill
,
K.
Lawler
, and
M.
Head-Gordon
,
J. Chem. Phys.
130
(
8
),
084101
(
2009
).
56.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
(
4-5
),
315
321
(
1984
).
You do not currently have access to this content.