Solvation of HCl at <100 K at the surface of nanoparticles of methanethiol, a sulfur derivative of methanol, was investigated by FTIR spectroscopy and on-the-fly molecular dynamics as implemented in the density functional code QUICKSTEP (which is part of the CP2K package). Some of the results have been further checked with MP2-level ab initio calculations. Unlike the HCl–CH3OH system that has been examined before, HCl on the surface or within methanethiol nanoparticles does not achieve an ionized form. Requirements for acid solvation/ionization are discussed in context with the results for methanol clusters.

1.
J. P.
Devlin
,
N.
Uras
,
J.
Sadlej
, and
V.
Buch
, “
Discrete stages in the solvation and ionization of hydrogen chloride adsorbed on ice particles
,”
Nature
417
,
269
271
(
2002
).
2.
V.
Buch
,
J.
Sadlej
,
N.
Aytemiz-Uras
, and
J. P.
Devlin
, “
Solvation and ionization of stages of HCl on ice nanocrystals
,”
J. Phys. Chem. A
106
,
9374
9389
(
2002
).
3.
N.
Uras-Aytemiz
,
J. P.
Devlin
,
J.
Sadlej
, and
V.
Buch
, “
HCl solvation at the surface and within methanol clusters/nanoparticles II: Evidence for molecular wires
,”
J. Phys. Chem. B
110
,
21751
(
2006
).
4.
N.
Uras-Aytemiz
,
J.
Sadlej
,
J. P.
Devlin
, and
V.
Buch
, “
HCl solvation in methanol clusters and nanoparticles: Evidence for proton-wires
,”
Chem. Phys. Lett.
422
,
179
(
2006
).
5.
J. P.
Devlin
,
J.
Sadlej
,
M.
Hollman
, and
V.
Buch
, “
Solvation stages of HCl and HBr in crystalline phases with methanol and small ethers: Acid-ether cluster complexes in amorphous and crystal phases
,”
J. Phys. Chem. A
108
,
2030
(
2004
).
6.
M.
Abu-samha
and
K. J.
Børve
, “
HCl dissociation in methanol clusters from ab initio molecular dynamics simulations and inner-shell photoelectron spectroscopy
,”
J. Phys. Chem. A
118
,
6900
6907
(
2014
).
7.
V.
Buch
,
F.
Mohamed
,
M.
Krack
,
J.
Sadlej
,
J. P.
Devlin
, and
M.
Parrinello
, “
Solvation states of HCl in mixed ether:acid crystals: A computational study
,”
J. Chem. Phys.
121
,
12135
(
2004
).
8.
P.
Parent
,
J.
Lasne
,
G.
Marcotte
, and
C.
Laffon
, “
HCl adsorption on ice at low temperature: A combined X-ray absorption, photoemission and infrared study
,”
Phys. Chem. Chem. Phys.
13
,
7142
(
2011
).
9.
P.
Ayotte
,
P.
Marchand
,
J. L.
Daschbach
,
R. S.
Smith
, and
B. D.
Kay
, “
HCl adsorption and ionization on amorphous and crystalline H2O films below 50 K
,”
J. Phys. Chem. A
115
,
6002
(
2011
).
10.
J. P.
Devlin
and
H.
Kang
, “
Comment on “HCl adsorption on ice at low temperature: A combined X-ray absorption, photoemission and infrared study,” by P. Parent, J. Lasne, G. Marcotte, and C. Laffon, Phys. Chem. Chem. Phys. 13, 7142 (2011)
,”
Phys. Chem. Chem. Phys.
14
,
1048
1049
(
2012
).
11.
X.
Kong
,
A.
Waldner
,
F.
Orlando
,
L.
Artiglia
,
T.
Huthwelker
,
M.
Markus Ammann
, and
T.
Bartels-Rausch
, “
Coexistence of physisorbed and solvated HCl at warm ice surfaces
,”
J. Phys. Chem. Lett.
8
,
4757
4762
(
2017
).
12.
W. L.
Jolly
,
Modern Inorganic Chemistry
(
McGraw-Hill Book Company
,
Singapore
,
1986
).
13.
P. R.
Rablen
,
J. W.
Lockman
, and
W. L.
Jorgensen
, “
Ab initio study of hydrogen-bonded complexes of small organic molecules with water
,”
J. Phys. Chem. A
102
,
3782
(
1998
).
14.
M.
Balci
,
Ö.
Boylu
, and
N.
Uras-Aytemiz
, “
Nonadditive effects in the mixed trimers of HCl and methanethiol
,”
J. Chem. Phys.
126
,
244308
(
2007
).
15.
A.
Andrzejewska
and
J.
Sadlej
, “
Ab initio study on mixed methanol–hydrogen chloride dimer and trimers
,”
Chem. Phys. Lett.
393
,
228
(
2004
).
16.
M.
Weimann
,
M.
Farnik
,
M. A.
Suhm
,
M. E.
Alikhani
, and
J.
Sadlej
, “
Cooperative and anticooperative mixed trimers of HCl and methanol
,”
J. Mol. Struct.
790
,
18
(
2006
).
17.
F.
Wennmohs
,
V.
Staemmler
, and
M.
Schindler
, “
Theoretical investigation of weak hydrogen bonds to sulfur
,”
J. Chem. Phys.
119
,
3208
(
2003
).
18.
M.
Wierzejewska
and
M.
Saldyka
, “
Are hydrogen bonds to sulfur and oxygen different? Theoretical study of dimethylsulfide and dimethylether complexes with nitric acid
,”
Chem. Phys. Lett.
391
,
143
(
2004
).
19.
L.
Du
,
S.
Tang
,
A. S.
Hansen
,
B. N.
Frandsen
,
Z.
Maroun
, and
H. G.
Kjaergaard
, “
Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur
,”
Chem. Phys. Lett.
667
,
146
153
(
2017
).
20.
H. S.
Biswal
,
P. R.
Shirhatti
, and
S.
Wategaonkar
, “
O–H···O versus O–H···S hydrogen bonding I: Experimental and computational studies on the p-cresol·H2O and p-cresol·H2S complexes
,”
J. Phys. Chem. A
113
,
5633
(
2009
).
21.
H. S.
Biswal
,
P. R.
Shirhatti
, and
S.
Wategaonkar
, “
O–H···O versus O–H···S hydrogen bonding. 2. Alcohols and thiols as hydrogen bond acceptors
,”
J. Phys. Chem. A
114
,
6944
(
2010
).
22.
H. S.
Biswal
and
S.
Wategaonkar
, “
O–H···O versus O–H···S hydrogen bonding. 3. IR–UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog
,”
J. Phys. Chem. A
114
,
5947
(
2010
).
23.
S.
Bhattacharyya
,
A.
Bhattacherjee
,
P. R.
Shirhatti
, and
S.
Wategaonkar
, “
O–H···S hydrogen bonds conform to the acid–base formalism
,”
J. Phys. Chem. A
117
,
8238
8250
(
2013
).
24.
H. S.
Biswal
and
S.
Wategaonkar
, “
OH···X (X = O, S) hydrogen bonding in tetrahydrofuran and tetrahydrothiophene
,”
J. Chem. Phys.
135
,
134306
(
2011
).
25.
V.
Buch
,
L.
Delzeit
,
C.
Blackledge
, and
J. P.
Devlin
, “
Structure of the ice nanocrystal surface from simulated versus experimental spectra of adsorbed CF4
,”
J. Phys. Chem.
100
,
3732
(
1996
).
26.
H.
Kang
,
T. H.
Shin
,
S. C.
Park
,
I. K.
Kim
, and
S. J.
Han
, “
Acidity of hydrogen chloride on ice
,”
J. Am. Chem. Soc.
122
,
9842
(
2000
).
27.
S.
Haq
,
J.
Harnett
, and
A.
Hodgson
, “
Adsorption and solvation of HCl into ice surfaces
,”
J. Phys. Chem. B
106
,
3950
(
2002
).
28.
See for example,
Ph.
Parent
and
C.
Laffon
, “
Adsorption of HCl on the water ice surface studied by X-ray absorption spectroscopy
,”
J. Phys. Chem. B
109
,
1547
(
2005
).
29.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2000
).
30.
G.
Hettner
, “
Die kernschwingungsbande des festen und flüssigen chlorwasserstoffs zwischen 20° abs. und 160° abs
,”
Z. Phys.
89
,
234
(
1934
).
31.
T.
Kojima
and
T.
Nishikawa
, “
Potential barrier and molecular structure of methyl mercaptan from its microwave spectra
,”
J. Phys. Soc. Jpn.
12
,
680
(
1957
).
32.
T.
Kojima
, “
Microwave spectrum of methyl mercaptan
,”
J. Phys. Soc. Jpn.
15
,
1284
(
1960
).
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, gaussian 09, Revision E.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
34.
J.
Contreras-García
,
E. R.
Johnson
,
S.
Keinan
,
R.
Chaudret
,
J.-P.
Piquemal
,
D. N.
Beratan
, and
W.
Yang
, “
NCIPLOT: A program for plotting non-covalent interaction regions
,”
J. Chem. Theory Comput.
7
,
625
632
(
2011
).
35.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sánchez
,
J.
Contreras-García
,
A. J.
Cohen
, and
W.
Yang
, “
Revealing noncovalent interactions
,”
J. Am. Chem. Soc.
132
,
6498
6506
(
2010
).
36.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
, “
Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
,”
Chem. Rev.
94
,
1887
1930
(
1994
).
37.
A.
Heßelmann
and
G.
Jansen
, “
The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential
,”
Phys. Chem. Chem. Phys.
5
,
5010
5014
(
2003
).
38.
A.
Heßelmann
and
G.
Jansen
, “
First-order intermolecular interaction energies from Kohn–Sham orbitals
,”
Chem. Phys. Lett.
357
,
464
470
(
2002
).
39.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
 et al, molpro, version 2015.1, a package of ab initio programs,
2015
, see http://www.molpro.net.
40.
J.
VandeVondele
,
M.
Krack
,
F.
Mohammed
,
M.
Parinello
,
T.
Chassaing
, and
J.
Hutter
, “
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
(
2005
).
41.
See https://www.cp2k.org for CP2K.
42.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
43.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
44.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
45.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
46.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
47.
V.
Buch
,
F.
Mohamed
,
M.
Parrinello
, and
J. P.
Devlin
, “
Elusive structure of HCl monohydrate
,”
J. Chem. Phys.
126
,
074503
(
2007
).
48.
V.
Buch
,
F.
Mohamed
,
M.
Parrinello
, and
J. P.
Devlin
, “
A new glance at HCl-monohydrate spectroscopy, using on-the-fly dynamics
,”
J. Chem. Phys.
126
,
021102
(
2007
).
49.
T.
Kosztolányi
,
I.
Bakó
, and
G.
Pálinkás
, “
Hydrogen bonding in liquid methanol, methylamine, and methanethiol studied by molecular-dynamics simulations
,”
J. Chem. Phys.
118
,
4546
(
2003
).

Supplementary Material

You do not currently have access to this content.