Understanding the interfacial heat transfer and thermal resistance at an interface between two dissimilar materials is of great importance in the development of nanoscale systems. This paper introduces a new and reliable linear response method for calculating the interfacial thermal resistance or Kapitza resistance in fluid-solid interfaces with the use of equilibrium molecular dynamics (EMD) simulations. The theoretical predictions are validated against classical molecular dynamics (MD) simulations. MD simulations are carried out in a Lennard-Jones (L-J) system with fluid confined between two solid slabs. Different types of interfaces are tested by varying the fluid-solid interactions (wetting coefficient) at the interface. It is observed that the Kapitza length decreases monotonically with an increasing wetting coefficient as expected. The theory is further validated by simulating under different conditions such as channel width, density, and temperature. Our method allows us to directly determine the Kapitza length from EMD simulations by considering the temperature fluctuation and heat flux fluctuations at the interface. The predicted Kapitza length shows an excellent agreement with the results obtained from both EMD and non-equilibrium MD simulations.

1.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer Science & Business Media
,
2006
), Vol. 29.
2.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
, “
Nanoscale thermal transport
,”
J. Appl. Phys.
93
,
793
818
(
2003
).
3.
E.
Pop
, “
Energy dissipation and transport in nanoscale devices
,”
Nano Res.
3
,
147
169
(
2010
).
4.
P.
Kapitza
, “
The study of heat transfer in helium II
,”
J. Phys. USSR
4
,
181
(
1941
).
5.
I. M.
Khalatnikov
,
An Introduction to the Theory of Superfluidity
(
CRC Press
,
2018
).
6.
L.
Bocquet
and
J.-L.
Barrat
, “
Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
,”
Phys. Rev. E
49
,
3079
(
1994
).
7.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Slip flow in graphene nanochannels
,”
J. Chem. Phys.
135
,
144701
(
2011
).
8.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
(
Academic Press
,
2013
).
9.
W. G.
Hoover
, “
Nonequilibrium molecular dynamics
,”
Annu. Rev. Phys. Chem.
34
,
103
127
(
1983
).
10.
D. J.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Cambridge University Press
,
2008
).
11.
Z.
Liang
and
M.
Hu
, “
Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations
,”
J. Appl. Phys.
123
,
191101
(
2018
).
12.
M. R.
Hasan
,
T. Q.
Vo
, and
B.
Kim
, “
Manipulating thermal resistance at the solid–fluid interface through monolayer deposition
,”
RSC Adv.
9
,
4948
4956
(
2019
).
13.
Y.-J.
Wu
,
L.
Fang
, and
Y.
Xu
, “
Predicting interfacial thermal resistance by machine learning
,”
npj Comput. Mater.
5
,
56
(
2019
).
14.
S.
Chen
,
M.
Yang
,
B.
Liu
,
M.
Xu
,
T.
Zhang
,
B.
Zhuang
,
D.
Ding
,
X.
Huai
, and
H.
Zhang
, “
Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains
,”
RSC Adv.
9
,
4563
4570
(
2019
).
15.
Y.
Ma
,
Z.
Zhang
,
J.
Chen
,
K.
Sääskilahti
,
S.
Volz
, and
J.
Chen
, “
Ordered water layer induced by interfacial charge decoration leads to an ultra-low Kapitza resistance between graphene and water
,”
Carbon
135
,
263
269
(
2018
).
16.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations
,”
J. Chem. Phys.
136
,
024705
(
2012
).
17.
E.
Landry
and
A.
McGaughey
, “
Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
,”
Phys. Rev. B
80
,
165304
(
2009
).
18.
R. E.
Jones
,
J.
Duda
,
X.
Zhou
,
C.
Kimmer
, and
P.
Hopkins
, “
Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics
,”
Appl. Phys. Lett.
102
,
183119
(
2013
).
19.
T.
Watanabe
,
B.
Ni
,
S. R.
Phillpot
,
P. K.
Schelling
, and
P.
Keblinski
, “
Thermal conductance across grain boundaries in diamond from molecular dynamics simulation
,”
J. Appl. Phys.
102
,
063503
(
2007
).
20.
Z.
Liang
,
K.
Sasikumar
, and
P.
Keblinski
, “
Thermal transport across a substrate–thin-film interface: Effects of film thickness and surface roughness
,”
Phys. Rev. Lett.
113
,
065901
(
2014
).
21.
Z.
Liang
and
P.
Keblinski
, “
Finite-size effects on molecular dynamics interfacial thermal-resistance predictions
,”
Phys. Rev. B
90
,
075411
(
2014
).
22.
S.
Merabia
,
S.
Shenogin
,
L.
Joly
,
P.
Keblinski
, and
J.-L.
Barrat
, “
Heat transfer from nanoparticles: A corresponding state analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15113
15118
(
2009
).
23.
A.
Lervik
,
F.
Bresme
, and
S.
Kjelstrup
, “
Heat transfer in soft nanoscale interfaces: The influence of interface curvature
,”
Soft Matter
5
,
2407
2414
(
2009
).
24.
A. S.
Tascini
,
J.
Armstrong
,
E.
Chiavazzo
,
M.
Fasano
,
P.
Asinari
, and
F.
Bresme
, “
Thermal transport across nanoparticle fluid interfaces: The interplay of interfacial curvature and nanoparticle fluid interactions
,”
Phys. Chem. Chem. Phys.
19
,
3244
(
2017
).
25.
J.
Muscatello
,
E.
Chacón
,
P.
Tarazona
, and
F.
Bresme
, “
Deconstructing temperature gradients across fluid interfaces: The structural origin of the thermal resistance of liquid-vapor interfaces
,”
Phys. Rev. Lett.
119
,
045901
(
2017
).
26.
H.
Hu
and
Y.
Sun
, “
Effect of nanopatterns on Kapitza resistance at a water-gold interface during boiling: A molecular dynamics study
,”
J. Appl. Phys.
112
,
053508
(
2012
).
27.
A.
Pham
,
M.
Barisik
, and
B.
Kim
, “
Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces
,”
J. Chem. Phys.
139
,
244702
(
2013
).
28.
B.
Ramos-Alvarado
,
S.
Kumar
, and
G.
Peterson
, “
Solid–liquid thermal transport and its relationship with wettability and the interfacial liquid structure
,”
J. Phys. Chem. Lett.
7
,
3497
3501
(
2016
).
29.
H.
Han
,
S.
Merabia
, and
F.
Müller-Plathe
, “
Thermal transport at a solid–nanofluid interface: From increase of thermal resistance towards a shift of rapid boiling
,”
Nanoscale
9
,
8314
8320
(
2017
).
30.
J.-L.
Barrat
and
F.
Chiaruttini
, “
Kapitza resistance at the liquid—Solid interface
,”
Mol. Phys.
101
,
1605
1610
(
2003
).
31.
A.
Rajabpour
and
S.
Volz
, “
Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics
,”
J. Appl. Phys.
108
,
094324
(
2010
).
32.
S.
Merabia
and
K.
Termentzidis
, “
Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics
,”
Phys. Rev. B
86
,
094303
(
2012
).
33.
Z.
Liang
,
W.
Evans
, and
P.
Keblinski
, “
Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces
,”
Phys. Rev. E
87
,
022119
(
2013
).
34.
Y.
Chalopin
,
K.
Esfarjani
,
A.
Henry
,
S.
Volz
, and
G.
Chen
, “
Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics
,”
Phys. Rev. B
85
,
195302
(
2012
).
35.
B. H.
Kim
,
A.
Beskok
, and
T.
Cagin
, “
Molecular dynamics simulations of thermal resistance at the liquid-solid interface
,”
J. Chem. Phys.
129
,
174701
(
2008
).
36.
J. S.
Hansen
,
B. D.
Todd
, and
P. J.
Daivis
, “
Prediction of fluid velocity slip at solid surfaces
,”
Phys. Rev. E
84
,
016313
(
2011
).
37.
B. D.
Todd
and
P. J.
Daivis
,
Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(
Cambridge University Press
,
2017
).
38.
B. D.
Todd
,
P. J.
Daivis
, and
D. J.
Evans
, “
Heat flux vector in highly inhomogeneous nonequilibrium fluids
,”
Phys. Rev. E
51
,
4362
(
1995
).
39.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
40.
J.-L.
Barrat
and
L.
Bocquet
, “
Large slip effect at a nonwetting fluid-solid interface
,”
Phys. Rev. Lett.
82
,
4671
(
1999
).
41.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
42.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
43.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol. 1.
44.
R.
Puech
,
G.
Bonfait
, and
B.
Castaing
, “
Mobility of the 3He solid-liquid interface: Experiment and theory
,”
J. Low Temp. Phys.
62
,
315
(
1986
).
45.
Z.
Liang
and
H.-L.
Tsai
, “
Effect of molecular film thickness on thermal conduction across solid-film interfaces
,”
Phys. Rev. E
83
,
061603
(
2011
).
46.
D.
Camargo
,
J.
de la Torre
,
D.
Duque-Zumajo
,
P.
Espanol
,
R.
Delgado-Buscalioni
, and
F.
Chejne
, “
Nanoscale hydrodynamics near solids
,”
J. Chem. Phys.
148
,
064107
(
2018
).
47.
D.
Camargo
,
J.
de la Torre
,
R.
Delgado-Buscalioni
,
F.
Chejne
, and
P.
Espanol
, “
Boundary conditions derived from a microscopic theory of hydrodynamics near solids
,”
J. Chem. Phys.
150
,
144104
(
2019
).
48.
H.-S.
Yang
,
G.-R.
Bai
,
L.
Thompson
, and
J.
Eastman
, “
Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia
,”
Acta Mater.
50
,
2309
2317
(
2002
).
49.
A.
Chernatynskiy
,
X.-M.
Bai
, and
J.
Gan
, “
Systematic investigation of the misorientation-and temperature-dependent Kapitza resistance in CeO2
,”
Int. J. Heat Mass Transfer
99
,
461
469
(
2016
).
50.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
How fast does water flow in carbon nanotubes?
,”
J. Chem. Phys.
138
,
094701
(
2013
).
You do not currently have access to this content.