We investigate complex structure-dynamics relations in glass-forming ionic liquids comprising 1-alkyl-3-methylimidazolium cations and bis(trifluoromethylsulfonyl)imide anions. In doing so, we exploit the microheterogeneous structures emerging when the alkyl length is increased in the range n = 1–12 and use that 1H and 2H NMR give information about cation dynamics, while 19F NMR reports on anion motions. Furthermore, we combine spin-lattice relaxation analysis, including field-cycling relaxometry, with stimulated-echo experiments to follow reorientation dynamics related to structural relaxation in wide dynamic ranges and we apply static field gradients to probe translational diffusion. The resulting correlation times τ and diffusion coefficients D show Vogel-Fulcher-Tammann temperature dependence. Moreover, they indicate a moderate slowdown of both cation and anion dynamics with increasing alkyl length n. However, the relative diffusivities of the ionic species depend on the cation size, where cations are more mobile for n < 6 and anions for n > 6. Finally, we relate rotational and translational motions in the framework of the Stokes-Einstein-Debye (SED) approach. We find that the SED relation is obeyed for anion dynamics in all samples, while it breaks down for cation dynamics when n is increased. The origin of this SED breakdown is shown to differ fundamentally from that reported previously for conventional glass formers. We argue that an emergence of cation clusters causes a retardation of cation diffusion relative to cation reorientation upon cooling, i.e., the studied ionic liquids show a complex interplay of structural and dynamical properties.

1.
R. D.
Rogers
and
K. R.
Seddon
,
Science
302
,
792
(
2003
).
2.
K. N.
Marsh
,
J. A.
Boxall
, and
R.
Lichtenthaler
,
Fluid Phase Equilib.
219
,
93
(
2004
).
3.
H.
Weingärtner
,
Angew. Chem., Int. Ed.
47
,
654
(
2008
).
4.
C. A.
Angell
,
Y.
Ansari
, and
Z.
Zhao
,
Faraday Discuss.
154
,
9
(
2012
).
5.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
(
2015
).
6.
M.
Marcinek
,
J.
Syzdek
,
M.
Marczewski
,
M.
Piszcz
,
L.
Niedzicki
,
M.
Kalita
,
A.
Plewa-Marczewska
,
A.
Bitner
,
P.
Wieczorek
,
T.
Trzeciak
,
M.
Kasprzyk
,
P.
Łȩżak
,
Z.
Zukowska
,
A.
Zalewska
, and
W.
Wieczorek
,
Solid State Ionics
276
,
107
(
2015
).
7.
T. L.
Greaves
and
C. J.
Drummond
,
Chem. Rev.
115
,
11379
(
2015
).
8.
M.
Armand
,
F.
Endres
,
D. R.
MacFarlane
,
H.
Ohno
, and
B.
Scrosati
,
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
(
World Scientific
,
2011
), pp.
129
137
.
9.
D. R.
MacFarlane
,
N.
Tachikawa
,
M.
Forsyth
,
J. M.
Pringle
,
P. C.
Howlett
,
G. D.
Elliott
,
J. H.
Davis
,
M.
Watanabe
,
P.
Simon
, and
C. A.
Angell
,
Energy Environ. Sci.
7
,
232
(
2014
).
10.
I.
Osada
,
H.
de Vries
,
B.
Scrosati
, and
S.
Passerini
,
Angew. Chem., Int. Ed.
55
,
500
(
2016
).
11.
M.
Watanabe
,
M. L.
Thomas
,
S.
Zhang
,
K.
Ueno
,
T.
Yasuda
, and
K.
Dokko
,
Chem. Rev.
117
,
7190
(
2017
).
12.
J.
Sangoro
,
C.
Iacob
,
A.
Serghei
,
S.
Naumov
,
P.
Galvosas
,
J.
Kärger
,
C.
Wespe
,
F.
Bordusa
,
A.
Stoppa
, and
J.
Hunger
,
J. Chem. Phys.
128
,
214509
(
2008
).
13.
J. R.
Sangoro
,
A.
Serghei
,
S.
Naumov
,
P.
Galvosas
,
J.
Kärger
,
C.
Wespe
,
F.
Bordusa
, and
F.
Kremer
,
Phys. Rev. E
77
,
051202
(
2008
).
14.
P. J.
Griffin
,
A. P.
Holt
,
K.
Tsunashima
,
J. R.
Sangoro
,
F.
Kremer
, and
A. P.
Sokolov
,
J. Chem. Phys.
142
,
084501
(
2015
).
15.
O.
Russina
,
M.
Beiner
,
C.
Pappas
,
M.
Russina
,
V.
Arrighi
,
T.
Unruh
,
C. L.
Mullan
,
C.
Hardacre
, and
A.
Triolo
,
J. Phys. Chem. B
113
,
8469
(
2009
).
16.
A.
Rivera
,
A.
Brodin
,
A.
Pugachev
, and
E. A.
Rössler
,
J. Chem. Phys.
126
,
114503
(
2007
).
17.
A.
Rivera
and
E. A.
Rössler
,
Phys. Rev. B
73
,
212201
(
2006
).
18.
T.
Pal
and
M.
Vogel
,
J. Chem. Phys.
150
,
124501
(
2019
).
19.
F.
Pabst
,
J.
Gabriel
,
P.
Weigl
, and
T.
Blochowicz
,
Chem. Phys.
494
,
103
(
2017
).
20.
J. R.
Sangoro
,
C.
Iacob
,
A. L.
Agapov
,
Y.
Wang
,
S.
Berdzinski
,
H.
Rexhausen
,
V.
Strehmel
,
C.
Friedrich
,
A. P.
Sokolov
, and
F.
Kremer
,
Soft Matter
10
,
3536
(
2014
).
21.
J. R.
Sangoro
,
C.
Iacob
,
A.
Serghei
,
C.
Friedrich
, and
F.
Kremer
,
Phys. Chem. Chem. Phys.
11
,
913
(
2009
).
22.
P.
Griffin
,
A. L.
Agapov
,
A.
Kisliuk
,
X.-G.
Sun
,
S.
Dai
,
V. N.
Novikov
, and
A. P.
Sokolov
,
J. Chem. Phys.
135
,
114509
(
2011
).
23.
J. N. A.
Canongia Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
,
3330
(
2006
).
24.
R. C.
Remsing
,
Z.
Liu
,
I.
Sergeyev
, and
G.
Moyna
,
J. Phys. Chem. B
112
,
7363
(
2008
).
25.
S. S.
Sarangi
,
W.
Zhao
,
F.
Müller-Plathe
, and
S.
Balasubramanian
,
ChemPhysChem
11
,
2001
(
2010
).
26.
A.
Weyman
,
M.
Bier
,
C.
Holm
, and
J.
Smiatek
,
J. Chem. Phys.
148
,
193824
(
2018
).
27.
J.
Liu
,
J. A. L.
Willcox
, and
H. J.
Kim
,
J. Chem. Phys.
148
,
193830
(
2018
).
28.
K.
Usui
,
J.
Hunger
,
M.
Bonn
, and
M.
Sulpizi
,
J. Chem. Phys.
148
,
193811
(
2018
).
29.
A.
Triolo
,
O.
Russina
,
H.-J.
Bleif
, and
E.
Di Cola
,
J. Phys. Chem. B
111
,
4641
(
2007
).
30.
O.
Russina
,
A.
Triolo
,
L.
Gontrani
, and
R.
Caminiti
,
J. Phys. Chem. Lett.
3
,
27
(
2012
).
31.
H. V. R.
Annapureddy
,
H. K.
Kashyap
,
P. M.
De Biase
, and
C. J.
Margulis
,
J. Phys. Chem. B
114
,
16838
(
2010
).
32.
C.
Hardacre
,
J. D.
Holbrey
,
C. L.
Mullan
,
T. G. A.
Youngs
, and
D. T.
Bowron
,
J. Chem. Phys.
133
,
074510
(
2010
).
33.
M.
Kofu
,
M.
Nagao
,
T.
Ueki
,
Y.
Kitazawa
,
Y.
Nakamura
,
S.
Sawamura
,
M.
Watanabe
, and
O.
Yamamuro
,
J. Phys. Chem. B
117
,
2773
(
2013
).
34.
M.
Kofu
,
M.
Tyagi
,
Y.
Inamura
,
K.
Miyazaki
, and
O.
Yamamuro
,
J. Chem. Phys.
143
,
234502
(
2015
).
35.
F.
Pabst
,
J.
Gabriel
, and
T.
Blochowicz
,
J. Phys. Chem. Lett.
10
,
2130
(
2019
).
36.
M.
Imanari
,
K.
Uchida
,
K.
Miyano
,
H.
Seki
, and
K.
Nishikawa
,
Phys. Chem. Chem. Phys.
12
,
2959
(
2010
).
37.
T.
Endo
and
S.
Sen
,
J. Phys. Chem. B
118
,
14888
(
2014
).
38.
D.
Kruk
,
R.
Meier
,
A.
Rachocki
,
A.
Korpała
,
R. K.
Singh
, and
E. A.
Rössler
,
J. Chem. Phys.
140
,
244509
(
2014
).
39.
A. O.
Seyedlar
,
S.
Stapf
, and
C.
Mattea
,
Phys. Chem. Chem. Phys.
17
,
1653
(
2015
).
40.
H.
Tokuda
,
K.
Hayamizu
,
K.
Ishii
,
M. A. B. H.
Susan
, and
M.
Watanabe
,
J. Phys. Chem. B
109
,
6103
(
2005
).
41.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic Press Limited
,
London
,
1994
).
42.
R.
Kimmich
,
NMR: Tomography, Diffusometry, Relaxometry
(
Springer
,
Berlin
,
1997
).
43.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E. A.
Rössler
,
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
44.
E. R.
deAzevedo
,
T.
Bonagamba
, and
D.
Reichert
,
Prog. Nucl. Magn. Reson. Spectrosc.
47
,
137
(
2005
).
45.
R.
Böhmer
,
M.
Storek
, and
M.
Vogel
, in
Modern Methods in Solid-State NMR: A Practitioner’s Guide
, New Developments in NMR, edited by
P.
Hodgkinson
(
The Royal Society of Chemistry
,
2018
), pp.
193
230
.
46.
R.
Giernoth
and
D.
Bankmann
,
Tetrahedron Lett.
47
,
4293
(
2006
).
47.
A.
Knorr
and
R.
Ludwig
,
Sci. Rep.
5
,
17505
(
2015
).
48.
A.
Strate
,
J.
Neumann
,
V.
Overbeck
,
A.-M.
Bonsa
,
D.
Michalik
,
D.
Paschek
, and
R.
Ludwig
,
J. Chem. Phys.
148
,
193843
(
2018
).
49.
P. T.
Callaghan
,
Principles of Nuclear Magnetic Resonance Microscopy
, revised edition (
Clarendon Press
,
Oxford
,
1993
).
50.
A.
Heintz
,
R.
Ludwig
, and
E.
Schmidt
,
Phys. Chem. Chem. Phys.
13
,
3268
(
2011
).
51.
G.
Annat
,
D. R.
MacFarlane
, and
M.
Forsyth
,
J. Phys. Chem. B
111
,
9018
(
2007
).
52.
J.
Kaszynska
,
A.
Rachocki
,
M.
Bielejewskiy
, and
J.
Tritt-Coc
,
Cellulose
24
,
1641
(
2017
).
53.
M.
Wencka
,
T.
Apih
,
R. C.
Korosec
,
J.
Jenczyk
,
M.
Jarek
,
K.
Szutkowski
,
S.
Jurga
, and
J.
Dolinsek
,
Phys. Chem. Chem. Phys.
19
,
15368
(
2017
).
54.
A.
Abragam
,
The Principles of Nuclear Magnetism
, 2nd ed. (
Clarendon Press
,
Oxford
,
1961
).
55.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev.
73
,
679
(
1948
).
56.
R.
Meier
,
D.
Kruk
,
A.
Bourdick
,
E.
Schneider
, and
E. A.
Rössler
,
Appl. Magn. Reson.
44
,
153
(
2013
).
57.
R.
Kimmich
and
E.
Anoardo
,
Prog. Nucl. Magn. Reson. Spectrosc.
44
,
257
(
2004
).
58.
59.
D.
Kruk
,
A.
Herrmann
, and
E. A.
Rössler
,
Prog. Nucl. Magn. Reson. Spectrosc.
63
,
33
(
2012
).
60.
F.
Fujara
,
D.
Kruk
, and
A. F.
Privalov
,
Prog. Nucl. Magn. Reson. Spectrosc.
82
,
39
(
2014
).
61.
R.
Diaz-Calleja
,
Macromolecules
33
,
8924
(
2000
).
62.
D.
Demuth
,
M.
Sattig
,
E.
Steinrücken
,
M.
Weigler
, and
M.
Vogel
,
Z. Phys. Chem.
232
,
1059
(
2018
).
63.
S. A.
Lusceac
and
M.
Vogel
,
J. Phys. Chem. B
114
,
10209
(
2010
).
64.
M.
Sattig
,
S.
Reutter
,
F.
Fujara
,
M.
Werner
,
G.
Buntkowsky
, and
M.
Vogel
,
Phys. Chem. Chem. Phys.
16
,
19229
(
2014
).
65.
D.
Schaefer
,
J.
Leisen
, and
H.-W.
Spiess
,
J. Magn. Reson., Ser. A
115
,
60
(
1995
).
66.
B.
Kresse
,
M.
Becher
,
A. F.
Privalov
,
M.
Hofmann
,
E. A.
Rössler
,
M.
Vogel
, and
F.
Fujara
,
J. Magn. Reson.
277
,
79
(
2017
).
67.
A.
Menjoge
,
J.
Dixon
,
J. F.
Brennecke
,
E. J.
Maginn
, and
S.
Vasenkov
,
J. Phys. Chem. B
113
,
6353
(
2009
).
68.
S.
Zhang
,
N.
Sun
,
X.
He
,
X.
Lu
, and
X.
Zhang
,
J. Phys. Chem. Ref. Data
35
,
1475
(
2006
).
69.
B.
Kresse
,
M.
Hofmann
,
A. F.
Privalov
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
48
,
4491
(
2015
).
70.
J.
Gabriel
,
O. V.
Petrov
,
Y.
Kim
,
S. W.
Martin
, and
M.
Vogel
,
Solid State Nucl. Magn. Reson.
70
,
53
(
2015
).
71.
D.
Kruk
,
R.
Meier
, and
E. A.
Rössler
,
J. Phys. Chem. B
115
,
951
(
2011
).
72.
R.
Meier
,
E.
Schneider
, and
E. A.
Rössler
,
J. Chem. Phys.
142
,
034503
(
2015
).
73.
M.
Flämig
,
M.
Hofmann
, and
E. A.
Rössler
,
Mol. Phys.
117
,
877
(
2019
).
74.
M. D.
Ediger
and
C. A.
Angell
,
J. Phys. Chem.
100
,
13200
(
1996
).
75.
C.
Schmidt
,
K. J.
Kuhn
, and
H.-W.
Spiess
,
Prog. Colloid Polymer Sci.
71
,
71
(
1985
).
77.
M.
Sattig
,
K.
Elamin
,
M.
Reuhl
,
J.
Swenson
, and
M.
Vogel
,
J. Phys. Chem. C
121
,
6796
(
2017
).
78.
M.
Vogel
and
E.
Rössler
,
J. Magn. Reson.
147
,
43
(
2000
).
80.
W.
Xu
,
E. I.
Cooper
, and
C. A.
Angell
,
J. Phys. Chem. B
107
,
6170
(
2003
).
81.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Platzek
,
J. Chem. Phys.
99
,
4201
(
1993
).
83.
P.
Sippel
,
P.
Lunkenheimer
,
S.
Krohns
,
E.
Thoms
, and
A.
Loidl
,
Sci. Rep.
5
,
13922
(
2015
).
84.
M.
Vogel
,
C.
Brinkmann
,
H.
Eckert
, and
A.
Heuer
,
Phys. Chem. Chem. Phys.
4
,
3237
(
2002
).
85.
I.
Chang
,
F.
Fujara
,
B.
Geil
,
G.
Heuberger
,
T.
Mangel
, and
H.
Sillescu
,
J. Non-Cryst. Solids
172–174
,
248
(
1994
).
86.
M. K.
Mapes
,
S. F.
Swallen
, and
M. D.
Ediger
,
J. Phys. Chem. B
110
,
507
(
2006
).
87.
S. F.
Swallen
,
P. A.
Bonvallet
,
R. J.
McMahon
, and
M. D.
Ediger
,
Phys. Rev. Lett.
90
,
015901
(
2003
).
88.
A. P.
Sokolov
and
K. S.
Schweizer
,
Phys. Rev. Lett.
102
,
248301
(
2009
).

Supplementary Material

You do not currently have access to this content.