Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.

1.
B. W.
Peterson
,
Y.
He
,
Y.
Ren
,
A.
Zerdoum
,
M. R.
Libera
,
P. K.
Sharma
,
A.-J.
van Winkelhoff
,
D.
Neut
,
P.
Stoodley
,
H. C.
van der Mei
, and
H. J.
Busscher
, “
Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges
,”
FEMS Microbiol. Rev.
39
,
234
245
(
2015
).
2.
H.-C.
Flemming
and
J.
Wingender
,
J. Nat. Rev. Microbiol.
8
,
623
(
2010
).
3.
R.
Donlan
,
Emerging Infect. Dis.
7
,
277
(
2001
).
4.
N.
Høiby
 et al,
Int. J. Antimicrob. Agents
35
,
322
(
2010
).
5.
Z.
Khatoon
,
C. D.
McTiernan
,
E. J.
Suuronen
,
T.-F.
Mah
, and
E. I.
Alarcon
, “
Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention
,”
Heliyon
4
,
e01067
(
2018
).
6.
A.
Milchev
and
K.
Binder
, “
Adsorption of oligomers and polymers into a polymer brush formed from grafted ring polymers
,”
Macromolecules
46
,
8724
(
2013
).
7.
J.
Duan
,
S.
Wu
,
X.
Zhang
,
G.
Huang
,
M.
Du
, and
B.
Hou
, “
Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater
,”
Electrochim. Acta
54
,
22
28
(
2008
).
8.
R.
Mansour
and
A.
Elshafei
, “
Role of microorganisms in corrosion induction and prevention
,”
Br. Biotechnol. J.
14
,
1
11
(
2016
).
9.
M. P.
Schultz
and
G. W.
Swain
, “
The influence of biofilms on skin friction drag
,”
Biofouling
15
,
129
139
(
2000
).
10.
B. R.
Sveinbjörnsson
,
R. A.
Weitekamp
,
G. M.
Miyake
,
Y.
Xia
,
H. A.
Atwater
, and
R. H.
Grubbs
, “
Rapid self-assembly of brush block copolymers to photonic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14332
14336
(
2012
).
11.
J. N.
Wilking
,
T. E.
Angelini
,
A.
Seminara
,
M. P.
Brenner
, and
D. A.
Weitz
,
MRS Bull.
36
,
385
(
2011
).
12.
J.
Jara
,
F.
Alarcón
,
A. K.
Monnappa
,
J. I.
Santos
,
V.
Bianco
,
P.
Nie
,
M. P.
Ciamarra
,
Á.
Canales
,
L.
Dinis
,
I.
López-Montero
,
C.
Valeriani
, and
B.
Orgaz
,
Front. Microbiol.
11
,
588884
(
2021
).
13.
H.
Boudarel
,
M.
Jean-Denis
,
B.
Blaysat
, and
M.
Grediac
, “
Towards standardized mechanical characterization of microbial biofilms: Analysis and critical review
,”
npj Biofilms Microbiomes
4
,
17
(
2018
).
14.
S. G. V.
Charlton
,
M. A.
White
,
S.
Jana
,
L. E.
Eland
,
P. G.
Jayathilake
,
J. G.
Burgess
,
J.
Chen
,
A.
Wipat
, and
T. P.
Curtis
, “
Regulating, measuring, and modeling the viscoelasticity of bacterial biofilms
,”
J. Bacteriol.
201
,
e00101
(
2019
).
15.
S.
Jana
,
S. G. V.
Charlton
,
L. E.
Eland
,
J. G.
Burgess
,
A.
Wipat
,
T. P.
Curtis
, and
J.
Chen
, “
Nonlinear rheological characteristics of single species bacterial biofilms
,”
npj Biofilms Microbiomes
6
,
19
(
2020
).
16.
N.
Billings
,
A.
Birjiniuk
,
T. S.
Samad
,
P. S.
Doyle
, and
K.
Ribbeck
, “
Material properties of biofilms—A review of methods for understanding permeability and mechanics
,”
Rep. Prog. Phys.
78
,
036601
(
2015
).
17.
V. D.
Gordon
,
M.
Davis-Fields
,
K.
Kovach
, and
C. A.
Rodesney
, “
Biofilms and mechanics: A review of experimental techniques and findings
,”
J. Phys. D: Appl. Phys.
50
,
223002
(
2017
).
18.
G.
Klauck
,
D. O.
Serra
,
A.
Possling
, and
R.
Hengge
, “
Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm
,”
Open Biol.
8
,
180066
(
2018
).
19.
E. J.
Stewart
,
M.
Ganesan
,
J. G.
Younger
, and
M. J.
Solomon
, “
Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly
,”
Sci. Rep.
5
,
13081
(
2015
).
20.
M.
Ganesan
,
E. J.
Stewart
,
J.
Szafranski
,
A. E.
Satorius
,
J. G.
Younger
, and
M. J.
Solomon
, “
Molar mass, entanglement, and associations of the biofilm polysaccharide of staphylococcus epidermidis
,”
Biomacromolecules
14
,
1474
1481
(
2013
).
21.
M.
Vergara-Irigaray
,
J.
Valle
,
N.
Merino
,
C.
Latasa
,
B.
García
,
I.
Ruiz de los Mozos
,
C.
Solano
,
A.
Toledo-Arana
,
J. R.
Penadés
, and
I.
Lasa
, “
Relevant role of fibronectin-binding proteins in staphylococcus aureus biofilm-associated foreign-body infections
,”
Infect. Immun.
77
,
3978
3991
(
2009
).
22.
L. K.
Jennings
,
K. M.
Storek
,
H. E.
Ledvina
,
C.
Coulon
,
L. S.
Marmont
,
I.
Sadovskaya
,
P. R.
Secor
,
B. S.
Tseng
,
M.
Scian
,
A.
Filloux
,
D. J.
Wozniak
,
P. L.
Howell
, and
M. R.
Parsek
, “
Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
11353
11358
(
2015
).
23.
J.
Sankaran
,
A.
Karampatzakis
,
S. A.
Rice
, and
T.
Wohland
, “
Quantitative imaging and spectroscopic technologies for microbiology
,”
FEMS Microbiol. Lett.
365
,
fny075
(
2018
).
24.
M.
Tallawi
,
M.
Opitz
, and
O.
Lieleg
, “
Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges
,”
Biomater. Sci.
5
,
887
900
(
2017
).
25.
E. S.
Gloag
,
G. K.
German
,
P.
Stoodley
, and
D. J.
Wozniak
, “
Viscoelastic properties of Pseudomonas aeruginosa variant biofilms
,”
Sci. Rep.
8
,
9691
(
2018
).
26.
I.
Klapper
and
J.
Dockery
,
SIAM Rev.
52
,
221
(
2010
).
27.
M.
Wang
and
M.
Thanou
, “
Targeting nanoparticles to cancer
,”
Pharmacol. Res.
62
,
90
99
(
2010
).
28.
T.
Zhang
,
N. G.
Cogan
, and
Q.
Wang
,
SIAM J. Appl. Math.
69
,
641
(
2008
).
29.
N.
Kandemir
,
W.
Vollmer
,
N. S.
Jakubovics
, and
J.
Chen
,
Sci. Rep.
8
,
10893
(
2018
).
30.
C.
Picioreanu
,
M. C. M.
van Loosdrecht
, and
J. J.
Heijnen
,
Water Sci. Technol.
39
,
115
(
1999
).
31.
C.
Picioreanu
,
J.-U.
Kreft
, and
M. C. M.
van Loosdrecht
,
Appl. Environ. Microbiol.
70
,
3024
(
2004
).
32.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
33.
P.
Español
and
P. B.
Warren
, “
Perspective: Dissipative particle dynamics
,”
J. Chem. Phys.
146
,
150901
(
2017
).
34.
C.
Peskin
and
D. M.
McQueen
,
J. Comput. Phys.
81
,
372
(
1977
).
35.
36.
J. F.
Hammond
,
E. J.
Stewart
,
J. G.
Younger
,
M. J.
Solomon
, and
D. M.
Bortz
,
Comput. Model. Eng. Sci.
98
,
295
(
2014
).
37.
J. A.
Stotsky
,
J. F.
Hammond
,
L.
Pavlovsky
,
E. J.
Stewart
,
J. G.
Younger
,
M. J.
Solomon
, and
D. M.
Bortz
,
J. Comput. Phys.
317
,
204
(
2016
).
38.
H.
Horn
and
S.
Lackner
,
Adv. Biochem. Eng./Biotechnol.
146
,
53
(
2014
).
39.
H. J.
Eberl
 et al, “
Computing intensive simulations in biofilm modeling
,” in
22nd International Symposium on High Performance Computing Systems and Applications
(
IEEE
,
2008
).
40.
Y.
Liu
and
A. C.
Balazs
,
Langmuir
34
,
1807
(
2018
).
41.
L.
Xu
,
N.
Giovambattista
,
S. V.
Buldyrev
,
P. G.
Debenedetti
, and
H. E.
Stanley
, “
Waterlike glass polyamorphism in a monoatomic isotropic Jagla model
,”
J. Chem. Phys.
134
,
064507
064514
(
2011
).
42.
M.
Bol
 et al,
Crit. Rev. Biotechnol.
33
,
145
(
2012
).
43.
G.
Raos
and
M.
Casalegno
,
J. Chem. Phys.
134
,
054902
(
2011
).
44.
M.
Mukhi
and
A.
Vishwanathan
, “
Identifying potential inhibitors of biofilm-antagonistic proteins to promote biofilm formation: A virtual screening and molecular dynamics simulations approach
,”
Mol. Diversity
26
,
2135
(
2021
).
45.
Z.
Xu
,
P.
Meakin
,
A.
Tartakovsky
, and
T. D.
Scheibe
, “
Dissipative-particle-dynamics model of biofilm growth
,”
Phys. Rev. E
83
,
066702
(
2011
).
46.
P.
Barai
,
A.
Kumar
, and
P. P.
Mukherjee
, “
Modeling of mesoscale variability in biofilm shear behavior
,”
PLoS One
11
,
e0165593
(
2016
).
47.
L.
Pavlovsky
,
J. G.
Younger
, and
M. J.
Solomon
, “
In situ rheology of staphylococcus epidermidis bacterial biofilms
,”
Soft Matter
9
,
122
131
(
2013
).
48.
J. A.
Stotsky
,
V.
Dukic
, and
D. M.
Bortz
,
Eur. J. Appl. Math.
29
,
1141
(
2018
).
49.
G.
Raos
,
M.
Moreno
, and
S.
Elli
, “
Computational experiments on filled rubber viscoelasticity: What is the role of particle–particle interactions?
,”
Macromolecules
39
,
6744
6751
(
2006
).
50.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
51.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
52.
G.
Alonci
,
F.
Fiorini
,
P.
Riva
,
F.
Monroy
,
I.
López-Montero
,
S.
Perretta
, and
L.
De Cola
, “
Injectable hybrid hydrogels, with cell-responsive degradation, for tumor resection
,”
ACS Appl. Bio Mater.
1
,
1301
1310
(
2018
).
53.
W. N.
Findley
and
F. A.
Davis
,
Creep and Relaxation of Nonlinear Viscoelastic Materials
(
Courier Corporation
,
2013
).
54.
A.
Aufderhorst-Roberts
and
G. H.
Koenderink
, “
Stiffening and inelastic fluidization in vimentin intermediate filament networks
,”
Soft Matter
15
,
7127
7136
(
2019
).
55.
J.
Kives
,
B.
Orgaz
, and
C.
SanJosé
, “
Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52
,”
Colloids Surf. B
52
,
123
(
2006
).
56.
M. S.
Waters
,
S.
Kundu
,
N.
Lin
, and
S.
Lin-Gobson
, “
Microstructure and mechanical properties of in situ Streptococcus mutans biofilms
,”
ACS Appl. Mater. Interfaces
6
(
1
),
327
332
.
57.
F.
Fiorini
,
E. A.
Prasetyanto
,
F.
Taraballi
,
L.
Pandolfi
,
F.
Monroy
,
I.
López-Montero
,
E.
Tasciotti
, and
L.
De Cola
, “
Nanocomposite hydrogels as platform for cells growth, proliferation, and chemotaxis
,”
Small
12
,
4881
4893
(
2016
).
58.
C. S.
Calude
and
G.
Longo
, “
The deluge of spurious correlations in big data
,”
Found. Sci.
22
,
595
612
(
2017
).
59.
R. D.
Groot
, “
Applications of dissipative particle dynamics
,” in
Novel Methods in Soft Matter Simulations
(
Springer
,
2004
), pp.
5
38
.
60.
M.
Krsmanovic
,
D.
Biswas
,
H.
Ali
,
A.
Kumar
,
R.
Ghosh
, and
A. K.
Dickerson
, “
Hydrodynamics and surface properties influence biofilm proliferation
,”
Adv. Colloid Interface Sci.
288
,
102336
(
2021
).
You do not currently have access to this content.