Chiral materials exhibit many interesting physical properties including circular dichroism, circularly polarized photoluminescence, and spin selectivity. Since its discovery, chirality-induced spin selectivity (CISS) has been demonstrated in many chiral material systems, which indicates promising applications in spintronic devices. Thus, searching for compounds that possess both sizable chirality and excellent spin transport properties is in order. Hybrid organic–inorganic perovskites have attracted intensive research interest due to their long carrier lifetime, high carrier mobility, chemically tunable electronic properties, and long spin lifetime, which make this emerging class of semiconductors promising candidate for spintronics. Moreover, hybrid perovskites integrate inorganic octahedral framework and organic ligands, which may introduce chirality into the materials, especially in quasi-two-dimensional structures. Recently, CISS has been observed in 2D chiral hybrid perovskites, showing the spin filtering effect. Studies of CISS in chiral hybrid perovskites not only help deepen our understanding of CISS mechanism but also shed new light on designing novel spintronic devices. In this review, we summarize the state-of-the-art studies of CISS effect in 2D chiral hybrid organic–inorganic perovskites system. We also discuss the remaining challenges and research opportunities of employing CISS in next-generation spintronic devices.

1.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
(
2
),
323
(
2004
).
2.
S.
Datta
and
B.
Das
, “
Electronic analog of the electro‐optic modulator
,”
Appl. Phys. Lett.
56
(
7
),
665
667
(
1990
),
3.
D. D.
Awschalom
and
M. E.
Flatté
, “
Challenges for semiconductor spintronics
,”
Nat. Phys.
3
(
3
),
153
159
(
2007
).
4.
W. J. M.
Naber
,
S.
Faez
, and
W. G.
van der Wiel
, “
Organic spintronics
,”
J. Phys. D: Appl. Phys.
40
(
12
),
R205
(
2007
).
5.
Z. H.
Xiong
et al, “
Giant magnetoresistance in organic spin-valves
,”
Nature
427
(
6977
),
821
824
(
2004
).
6.
E. C.
Ahn
, “
2D materials for spintronic devices
,”
npj 2D Mater. Appl.
4
(
1
),
17
(
2020
).
7.
Y. P.
Feng
et al, “
Prospects of spintronics based on 2D materials
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
(
5
),
e1313
(
2017
).
8.
W.
Wang
et al, “
Spin-valve effect in NiFe/MoS2/NiFe junctions
,”
Nano Lett.
15
(
8
),
5261
5267
(
2015
).
9.
R. L.
Vold
et al, “
Measurement of spin relaxation in complex systems
,”
J. Chem. Phys.
48
(
8
),
3831
3832
(
1968
).
10.
E.
Rashba
and
A. L.
Efros
, “
Orbital mechanisms of electron-spin manipulation by an electric field
,”
Phys. Rev. Lett.
91
(
12
),
126405
(
2003
).
11.
X.
Qiu
et al, “
Spin–orbit-torque engineering via oxygen manipulation
,”
Nat. Nanotechnol.
10
(
4
),
333
338
(
2015
).
12.
D.
Huertas-Hernando
,
F.
Guinea
, and
A.
Brataas
, “
Spin-orbit-mediated spin relaxation in graphene
,”
Phys. Rev. Lett.
103
(
14
),
146801
(
2009
).
13.
W. A.
Bonner
, “
Chirality and life
,”
Origins Life Evol. Biospheres
25
(
1–3
),
175
190
(
1995
).
14.
S.
Allenmark
, “
Induced circular dichroism by chiral molecular interaction
,”
Chirality
15
(
5
),
409
422
(
2003
).
15.
S.
Beaulieu
et al, “
Photoexcitation circular dichroism in chiral molecules
,”
Nat. Phys.
14
(
5
),
484
489
(
2018
).
16.
K.
Kimura
et al, “
Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet
,”
Phys. Rev. B
78
(
14
),
140401
(
2008
).
17.
R.
Naaman
and
D. H.
Waldeck
, “
Spintronics and chirality: Spin selectivity in electron transport through chiral molecules
,”
Annu. Rev. Phys. Chem.
66
,
263
281
(
2015
).
18.
R.
Naaman
and
D. H.
Waldeck
, “
Chiral-induced spin selectivity effect
,”
J. Phys. Chem. Lett.
3
(
16
),
2178
2187
(
2012
).
19.
F.
Evers
et al, “
Theory of chirality induced spin selectivity: Progress and challenges
,”
Adv. Mater.
34
(
13
),
2106629
(
2022
).
20.
M.
Gao
and
W.
Qin
, “
Organic chiral spin‐optics: The interaction between spin and photon in organic chiral materials
,”
Adv. Opt. Mater.
9
(
22
),
2101201
(
2021
).
21.
A. C.
Aragonès
et al, “
Measuring the spin‐polarization power of a single chiral molecule
,”
Small
13
(
2
),
1602519
(
2017
).
22.
Z.
Xie
et al, “
Spin specific electron conduction through DNA oligomers
,”
Nano Lett.
11
(
11
),
4652
4655
(
2011
).
23.
L. A. P.
Kane-Maguire
and
G. G.
Wallace
, “
Chiral conducting polymers
,”
Chem. Soc. Rev.
39
(
7
),
2545
2576
(
2010
).
24.
E.
Yashima
et al, “
Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions
,”
Chem. Rev.
116
(
22
),
13752
13990
(
2016
).
25.
A.
Inui
et al, “
Chirality-induced spin-polarized state of a chiral crystal CrNb3S6
,”
Phys. Rev. Lett.
124
(
16
),
166602
(
2020
).
26.
R.
Widmer
et al, “
Surface chirality of CuO thin films
,”
J. Am. Chem. Soc.
128
(
43
),
14103
14108
(
2006
).
27.
T. M.
Brenner
et al, “
Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties
,”
Nat. Rev. Mater.
1
(
1
),
15007
15016
(
2016
).
28.
M. M.
Lee
et al, “
Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
,”
Science
338
(
6107
),
643
647
(
2012
).
29.
H.
Cho
et al, “
Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes
,”
Science
350
(
6265
),
1222
1225
(
2015
).
30.
Y.
Chen
et al, “
Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements
,”
Nat. Commun.
7
(
1
),
12253
(
2016
).
31.
P.
Odenthal
et al, “
Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites
,”
Nat. Phys.
13
(
9
),
894
899
(
2017
).
32.
C.
Zhang
et al, “
Magnetic field effects in hybrid perovskite devices
,”
Nat. Phys.
11
(
5
),
427
434
(
2015
).
33.
J.
Wang
et al, “
Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites
,”
Nat. Commun.
10
(
1
),
129
(
2019
).
34.
J.
Wang
et al, “
Tunable spin characteristic properties in spin valve devices based on hybrid organic–inorganic perovskites
,”
Adv. Mater.
31
(
41
),
1904059
(
2019
).
35.
G.
Long
et al, “
Chiral-perovskite optoelectronics
,”
Nat. Rev. Mater.
5
(
6
),
423
439
(
2020
).
36.
H.
Lu
et al, “
Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites
,”
Sci. Adv.
5
(
12
),
eaay0571
(
2019
).
37.
Y.-H.
Kim
et al, “
Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode
,”
Science
371
(
6534
),
1129
1133
(
2021
).
38.
J.
Wang
et al, “
Spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral two-dimensional hybrid organic–inorganic perovskites
,”
ACS Nano
15
(
1
),
588
595
(
2020
).
39.
K.
Ray
et al, “
Asymmetric scattering of polarized electrons by organized organic films of chiral molecules
,”
Science
283
(
5403
),
814
816
(
1999
).
40.
S.
Mishra
et al, “
Length-dependent electron spin polarization in oligopeptides and DNA
,”
J. Phys. Chem. C
124
(
19
),
10776
10782
(
2020
).
41.
A. K.
Mondal
et al, “
Long-range spin-selective transport in chiral metal–organic crystals with temperature-activated magnetization
,”
ACS Nano
14
(
12
),
16624
16633
(
2020
).
42.
C.
Kulkarni
et al, “
Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber‐based materials
,”
Adv. Mater.
32
(
7
),
1904965
(
2020
).
43.
B.
Göhler
et al, “
Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA
,”
Science
331
(
6019
),
894
897
(
2011
).
44.
D.
Mishra
et al, “
Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
37
),
14872
14876
(
2013
).
45.
O.
Ben Dor
et al, “
Local light-induced magnetization using nanodots and chiral molecules
,”
Nano Lett.
14
(
11
),
6042
6049
(
2014
).
46.
B. P.
Bloom
et al, “
Spin selective charge transport through cysteine capped CdSe quantum dots
,”
Nano Lett.
16
(
7
),
4583
4589
(
2016
).
47.
A.
Kumar
et al, “
Chirality-induced spin polarization places symmetry constraints on biomolecular interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
10
),
2474
2478
(
2017
).
48.
K. B.
Ghosh
et al, “
Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes
,”
J. Phys. Chem. C
123
(
5
),
3024
3031
(
2019
).
49.
Q.
Wei
and
Z.
Ning
, “
Chiral perovskite spin-optoelectronics and spintronics: Toward judicious design and application
,”
ACS Mater. Lett.
3
(
9
),
1266
1275
(
2021
).
50.
E.
Saitoh
et al, “
Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
,”
Appl. Phys. Lett.
88
(
18
),
182509
(
2006
).
51.
S.
Yeganeh
et al, “
Chiral electron transport: Scattering through helical potentials
,”
J. Chem. Phys.
131
(
1
),
014707
(
2009
).
52.
E.
Medina
et al, “
Chiral molecular films as electron polarizers and polarization modulators
,”
Europhys. Lett.
99
(
1
),
17006
(
2012
).
53.
A. A.
Eremko
and
V. M.
Loktev
, “
Spin sensitive electron transmission through helical potentials
,”
Phys. Rev. B
88
(
16
),
165409
(
2013
).
54.
M. S.
Zöllner
et al, “
Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission
,”
J. Chem. Theory Comput.
16
(
5
),
2914
2929
(
2020
).
55.
A.
Ghazaryan
,
Y.
Paltiel
, and
M.
Lemeshko
, “
Analytic model of chiral-induced spin selectivity
,”
J. Phys. Chem. C
124
(
21
),
11716
11721
(
2020
).
56.
D. H.
Waldeck
,
R.
Naaman
, and
Y.
Paltiel
, “
The spin selectivity effect in chiral materials
,”
APL Mater.
9
(
4
),
040902
(
2021
).
57.
R.
Gutierrez
et al, “
Spin-selective transport through helical molecular systems
,”
Phys. Rev. B
85
(
8
),
081404
(
2012
).
58.
A.-M.
Guo
and
Q.-f.
Sun
, “
Spin-selective transport of electrons in DNA double helix
,”
Phys. Rev. Lett.
108
(
21
),
218102
(
2012
).
59.
A.-M.
Guo
and
Q.-f.
Sun
, “
Sequence-dependent spin-selective tunneling along double-stranded DNA
,”
Phys. Rev. B
86
(
11
),
115441
(
2012
).
60.
A. M.
Guo
and
Q. F.
Sun
, “
Spin-dependent electron transport in protein-like single-helical molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
32
),
11658
11662
(
2014
).
61.
S.
Matityahu
et al, “
Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and non-unitary effects
,”
Phys. Rev. B
93
(
7
),
075407
(
2016
).
62.
J.
Gersten
,
K.
Kaasbjerg
, and
A.
Nitzan
, “
Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling
,”
J. Chem. Phys.
139
(
11
),
114111
(
2013
).
63.
Y.
Wolf
et al, “
Unusual spin polarization in the chirality-induced spin selectivity
,”
ACS Nano
16
(
11
),
18601
18607
(
2022
).
64.
Y.
Liu
et al, “
Chirality-driven topological electronic structure of DNA-like materials
,”
Nat. Mater.
20
(
5
),
638
644
(
2021
).
65.
A. G.
Volosniev
et al, “
Interplay between friction and spin-orbit coupling as a source of spin polarization
,”
Phys. Rev. B
104
(
2
),
024430
(
2021
).
66.
S.
Dalum
and
P.
Hedegård
, “
Theory of chiral induced spin selectivity
,”
Nano Lett.
19
(
8
),
5253
5259
(
2019
).
67.
M.
Eckshtain-Levi
et al, “
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
,”
Nat. Commun.
7
,
10744
(
2016
).
68.
D.
Nürenberg
and
H.
Zacharias
, “
Evaluation of spin-flip scattering in chirality-induced spin selectivity using the Riccati equation
,”
Phys. Chem. Chem. Phys.
21
(
7
),
3761
3770
(
2019
).
69.
S.
Mishra
et al, “
Spin filtering along chiral polymers
,”
Angew. Chem., Int. Ed.
59
(
34
),
14671
14676
(
2020
).
70.
A. G.
Aronov
and
Y. B.
Lyanda-Geller
, “
Spin-orbit Berry phase in conducting rings
,”
Phys. Rev. Lett.
70
(
3
),
343
346
(
1993
).
71.
B. P.
Bloom
et al, “
Chirality control of electron transfer in quantum dot assemblies
,”
J. Am. Chem. Soc.
139
(
26
),
9038
9043
(
2017
).
72.
K.
Michaeli
et al, “
A new approach towards spintronics–spintronics with no magnets
,”
J. Phys.: Condens. Matter
29
(
10
),
103002
(
2017
).
73.
G. L. J. A.
Rikken
, “
A new twist on spintronics
,”
Science
331
(
6019
),
864
865
(
2011
).
74.
H.
Lu
,
Z. V.
Vardeny
, and
M. C.
Beard
, “
Control of light, spin and charge with chiral metal halide semiconductors
,”
Nat. Rev. Chem
6
(
7
),
470
485
(
2022
).
75.
W.
Fu
et al, “
Tailoring the functionality of organic spacer cations for efficient and stable quasi‐2D perovskite solar cells
,”
Adv. Funct. Mater.
29
(
25
),
1900221
(
2019
).
76.
M. K.
Jana
et al, “
Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling
,”
Nat. Commun.
11
(
1
),
4699
(
2020
).
77.
D. G.
Billing
and
A.
Lemmerer
, “
Bis[(S)-β-phenethylammonium] tribromoplumbate(II)
,”
Acta Crystallogr., Sect. E
59
(
6
),
m381
m383
(
2003
).
78.
D. G.
Billing
and
A.
Lemmerer
, “
Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group
,”
CrystEngComm
8
(
9
),
686
695
(
2006
).
79.
A.
Lemmerer
and
D.
Billings
, “
Inorganic–organic hybrids incorporating a chiral cyclic ammonium cation
,”
S. Afr. J. Chem.
66
,
263
272
(
2013
).
80.
J.
Ahn
et al, “
A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites
,”
Mater. Horiz.
4
(
5
),
851
856
(
2017
).
81.
D.
Li
et al, “
Chiral lead‐free hybrid perovskites for self‐powered circularly polarized light detection
,”
Angew. Chem.
133
(
15
),
8496
8499
(
2021
).
82.
P.-J.
Huang
,
K.
Taniguchi
, and
H.
Miyasaka
, “
Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations
,”
J. Am. Chem. Soc.
141
(
37
),
14520
14523
(
2019
).
83.
B.
Saparov
and
D. B.
Mitzi
, “
Organic–inorganic perovskites: Structural versatility for functional materials design
,”
Chem. Rev.
116
(
7
),
4558
4596
(
2016
).
84.
G.
Long
et al, “
Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites
,”
Adv. Mater.
31
(
17
),
1807628
(
2019
).
85.
H.-Y.
Ye
et al, “
Metal-free three-dimensional perovskite ferroelectrics
,”
Science
361
(
6398
),
151
155
(
2018
).
86.
H.
Ren
et al, “
2D perovskite nanosheets with intrinsic chirality
,”
J. Phys. Chem. Lett.
12
(
10
),
2676
2681
(
2021
).
87.
L.-L.
Zhu
et al, “
Stereochemically active lead chloride enantiomers mediated by homochiral organic cation
,”
Polyhedron
158
,
445
448
(
2019
).
88.
A.
Kojima
et al, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
(
17
),
6050
6051
(
2009
).
89.
Y.
Hu
et al, “
A chiral switchable photovoltaic ferroelectric 1D perovskite
,”
Sci. Adv.
6
(
9
),
eaay4213
(
2020
).
90.
J.
Hao
et al, “
Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures
,”
ACS Nano
15
(
4
),
7608
7617
(
2021
).
91.
Z.
Guo
et al, “
Giant optical activity and second harmonic generation in 2D hybrid copper halides
,”
Angew. Chem.
133
(
15
),
8522
8526
(
2021
).
92.
A. M.
Ben Salah
et al, “
Chiral and achiral copper(II) complexes: Structure, bonding and biological activities
,”
RSC Adv.
6
(
64
),
59055
59065
(
2016
).
93.
L.
Yao
et al, “
Circularly polarized luminescence from chiral tetranuclear copper(I) iodide clusters
,”
J. Phys. Chem. Lett.
11
(
4
),
1255
1260
(
2020
).
94.
K.
Wang
et al, “
Spin‐polarized electronic transport through ferromagnet/organic–inorganic hybrid perovskite spinterfaces at room temperature
,”
Adv. Mater. Interfaces
6
(
19
),
1900718
(
2019
).
95.
J. P.
Riehl
and
F. S.
Richardson
, “
Circularly polarized luminescence spectroscopy
,”
Chem. Rev.
86
(
1
),
1
16
(
1986
).
96.
A.
Ben-Moshe
et al, “
Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy
,”
Nano Lett.
16
(
12
),
7467
7473
(
2016
).
97.
J. A.
Schellman
and
P.
Oriel
, “
Origin of the cotton effect of helical polypeptides
,”
J. Chem. Phys.
37
(
9
),
2114
2124
(
1962
).
98.
G.
Long
et al, “
Spin control in reduced-dimensional chiral perovskites
,”
Nat. Photonics
12
(
9
),
528
533
(
2018
).
99.
Z. G.
Yu
, “
Effective-mass model and magneto-optical properties in hybrid perovskites
,”
Sci. Rep.
6
(
1
),
28576
28614
(
2016
).
100.
J.
Ma
et al, “
Chiral 2D perovskites with a high degree of circularly polarized photoluminescence
,”
ACS Nano
13
(
3
),
3659
3665
(
2019
).
101.
C.
Chen
et al, “
Circularly polarized light detection using chiral hybrid perovskite
,”
Nat. Commun.
10
(
1
),
1927
(
2019
).
102.
H.
Lu
et al, “
Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport
,”
J. Am. Chem. Soc.
142
(
30
),
13030
13040
(
2020
).
103.
T. G.
Rijks
et al, “
Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers
,”
Phys. Rev. B
51
(
1
),
283
(
1995
).
104.
X.
Chen
et al, “
Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals
,”
ACS Energy Lett.
3
(
9
),
2273
2279
(
2018
).
105.
Z.
Huang
et al, “
Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic–inorganic perovskites
,”
ACS Nano
14
(
8
),
10370
10375
(
2020
).
106.
F.
de Juan
et al, “
Quantized circular photogalvanic effect in Weyl semimetals
,”
Nat. Commun.
8
(
1
),
15995
(
2017
).
107.
K.
Leng
et al, “
Ferroelectricity and Rashba effect in 2D organic–inorganic hybrid perovskites
,”
Trends Chem.
3
(
9
),
716
732
(
2021
).
108.
Y.
Chen
et al, “
Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures
,”
ACS Nano
14
(
11
),
15154
15160
(
2020
).
109.
H.
Zeng
et al, “
Valley polarization in MoS2 monolayers by optical pumping
,”
Nat. Nanotechnol.
7
(
8
),
490
493
(
2012
).
110.
J. L.
Greenfield
et al, “
Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules
,”
Chem. Sci.
12
(
25
),
8589
8602
(
2021
).
111.
N. K.
Tailor
et al, “
The effect of dimensionality on the charge carrier mobility of halide perovskites
,”
J. Mater. Chem. A
9
(
38
),
21551
21575
(
2021
).
112.
R. L.
Milot
et al, “
Charge-carrier dynamics in 2D hybrid metal–halide perovskites
,”
Nano Lett.
16
(
11
),
7001
7007
(
2016
).
113.
M.
Kepenekian
et al, “
Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: From basics to devices
,”
ACS Nano
9
(
12
),
11557
11567
(
2015
).
114.
A. H.
Comstock
et al, “
Hybrid magnonics in hybrid perovskite antiferromagnets
,”
Nat. Commun.
14
(
1
),
1834
1837
(
2023
).
115.
K.
Kim
et al, “
Chiral-phonon-activated spin Seebeck effect
,”
Nat. Mater.
22
(
3
),
322
328
(
2023
).
You do not currently have access to this content.