The entanglement between system and bath often plays a pivotal role in complex systems spanning multiple orders of magnitude. A system–bath entanglement theorem was previously established for Gaussian environments in J. Chem. Phys. 152, 034102 (2020) regarding linear response functions. This theorem connects the entangled responses to the local system and bare bath properties. In this work, we generalize it to correlation functions. Key steps in derivations involve using the generalized Langevin dynamics for hybridizing bath modes and the Bogoliubov transformation that maps the original finite-temperature reservoir to an effective zero-temperature vacuum by employing an auxiliary bath. The generalized theorem allows us to evaluate the system–bath entangled correlations and the bath mode correlations in the total composite space, as long as we know the bare-bath statistical properties and obtain the reduced system correlations. To demonstrate the cross-scale entanglements, we utilize the generalized theorem to calculate the solvation free energy of an electron transfer system with intramolecular vibrational modes.

1.
E.
Weinan
,
Principles of Multiscale Modeling
(
Cambridge University Press
,
2011
).
2.
M. F.
Horstemeyer
, “
Multiscale modeling: A review
,” in
Practical Aspects of Computational Chemistry: Methods, Concepts and Applications
, edited by
J.
Leszczynski
and
M. K.
Shukla
(
Springer
,
Netherlands, Dordrecht
,
2010
), pp.
87
135
.
3.
J.
Fish
,
G. J.
Wagner
, and
S.
Keten
, “
Mesoscopic and multiscale modelling in materials
,”
Nat. Mater.
20
,
774
(
2021
).
4.
U.
Weiss
,
Quantum Dissipative Systems
, 5th ed. (
World Scientific
,
Singapore
,
2021
).
5.
A. O.
Caldeira
and
A. J.
Leggett
, “
Path integral approach to quantum Brownian motion
,”
Physica A
121
,
587
(
1983
).
6.
H.
Grabert
,
P.
Schramm
, and
G. L.
Ingold
, “
Quantum Brownian motion: The functional integral approach
,”
Phys. Rep.
168
,
115
(
1988
).
7.
G.
Lindblad
, “
Brownian motion of a quantum harmonic oscillator
,”
Rep. Math. Phys.
10
,
393
(
1976
).
8.
R. K.
Wangsness
and
F.
Bloch
, “
The dynamical theory of nuclear induction
,”
Phys. Rev.
89
,
728
(
1953
).
9.
F.
Bloch
, “
Generalized theory of relaxation
,”
Phys. Rev.
105
,
1206
(
1957
).
10.
A. G.
Redfield
, “
The theory of relaxation processes
,”
Adv. Magn. Reson.
1
,
1
(
1965
).
11.
Y. J.
Yan
,
F.
Shuang
,
R. X.
Xu
,
J. X.
Cheng
,
X. Q.
Li
,
C.
Yang
, and
H. Y.
Zhang
, “
Unified approach to the Bloch–Redfield theory and quantum Fokker–Planck equations
,”
J. Chem. Phys.
113
,
2068
(
2000
).
12.
L.
Diósi
and
W. T.
Strunz
, “
The non-Markovian stochastic Schrödinger equation for open systems
,”
Phys. Lett. A
235
,
569
(
1997
).
13.
J. T.
Stockburger
and
C. H.
Mak
, “
Stochastic Liouvillian algorithm to simulate dissipative quantum dynamics with arbitrary precision
,”
J. Chem. Phys.
110
,
4983
(
1999
).
14.
J. S.
Shao
, “
Decoupling quantum dissipation interaction via stochastic fields
,”
J. Chem. Phys.
120
,
5053
(
2004
).
15.
C.-Y.
Hsieh
and
J. S.
Cao
, “
A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations
,”
J. Chem. Phys.
148
,
014103
(
2018
).
16.
C.-Y.
Hsieh
and
J. S.
Cao
, “
A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths
,”
J. Chem. Phys.
148
,
014104
(
2018
).
17.
Y. C.
Wang
,
Y. L.
Ke
, and
Y.
Zhao
, “
The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1375
(
2019
).
18.
Y. A.
Yan
, “
Stochastic simulation of anharmonic dissipation. II. Harmonic bath potentials with quadratic couplings
,”
J. Chem. Phys.
150
,
074106
(
2019
).
19.
Z. H.
Chen
,
Y.
Wang
,
R. X.
Xu
, and
Y. J.
Yan
, “
Quantum dissipation with nonlinear environment couplings: Stochastic fields dressed dissipaton equation of motion approach
,”
J. Chem. Phys.
155
,
174111
(
2021
).
20.
H. B.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
(
2003
).
21.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
, “
The theory of a general quantum system interacting with a linear dissipative system
,”
Ann. Phys.
24
,
118
(
1963
).
22.
N.
Makri
, “
Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework
,”
Chem. Phys. Lett.
193
,
435
(
1992
).
23.
N.
Makri
and
D. E.
Makarov
, “
Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory
,”
J. Chem. Phys.
102
,
4600
(
1995
).
24.
N.
Makri
and
D. E.
Makarov
, “
Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology
,”
J. Chem. Phys.
102
,
4611
(
1995
).
25.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
(
1990
).
26.
Y. A.
Yan
,
F.
Yang
,
Y.
Liu
, and
J. S.
Shao
, “
Hierarchical approach based on stochastic decoupling to dissipative systems
,”
Chem. Phys. Lett.
395
,
216
(
2004
).
27.
R. X.
Xu
,
P.
Cui
,
X. Q.
Li
,
Y.
Mo
, and
Y. J.
Yan
, “
Exact quantum master equation via the calculus on path integrals
,”
J. Chem. Phys.
122
,
041103
(
2005
).
28.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
29.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
(
1961
).
30.
Y.
Zhang
,
T.-T.
Tang
,
C.
Girit
,
Z.
Hao
,
M. C.
Martin
,
A.
Zettl
,
M. F.
Crommie
,
Y. R.
Shen
, and
F.
Wang
, “
Direct observation of a widely tunable bandgap in bilayer graphene
,”
Nature
459
,
820
(
2009
).
31.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
32.
Z. H.
Chen
,
Y.
Wang
,
R. X.
Xu
, and
Y. J.
Yan
, “
Correlated vibration-solvent effects on the non-Condon exciton spectroscopy
,”
J. Chem. Phys.
154
,
244105
(
2021
).
33.
Y.
Wang
,
Z. H.
Chen
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
, “
A statistical quasi-particles thermofield theory with Gaussian environments: System–bath entanglement theorem for nonequilibrium correlation functions
,”
J. Chem. Phys.
157
,
044102
(
2022
).
34.
Y. J.
Yan
, “
Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach
,”
J. Chem. Phys.
140
,
054105
(
2014
).
35.
H. D.
Zhang
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
, “
Nonperturbative spin–boson and spin–spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study
,”
J. Chem. Phys.
142
,
024112
(
2015
).
36.
R. X.
Xu
,
H. D.
Zhang
,
X.
Zheng
, and
Y. J.
Yan
, “
Dissipaton equation of motion for system-and-bath interference dynamics
,”
Sci. China Chem.
58
,
1816
(
2015
), Special Issue: Lemin Li Festschrift.
37.
Y.
Wang
and
Y. J.
Yan
, “
Quantum mechanics of open systems: Dissipaton theories
,”
J. Chem. Phys.
157
,
170901
(
2022
).
38.
P. L.
Du
,
Y.
Wang
,
R. X.
Xu
,
H. D.
Zhang
, and
Y. J.
Yan
, “
System-bath entanglement theorem with Gaussian environments
,”
J. Chem. Phys.
152
,
034102
(
2020
).
39.
G.
Semenoff
and
H.
Umezawa
, “
Functional methods in thermofield dynamics: A real-time perturbation theory for quantum statistical mechanics
,”
Nucl. Phys. B
220
,
196
(
1983
).
40.
H.
Umezawa
,
Advanced Field Theory: Micro, Macro, and Thermal Physics
(
Springer
,
New York
,
1995
).
41.
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
, “
Non-Markovian quantum state diffusion
,”
Phys. Rev. A
58
,
1699
(
1998
).
42.
I.
de Vega
and
M.-C.
Bañuls
, “
Thermofield-based chain-mapping approach for open quantum systems
,”
Phys. Rev. A
92
,
052116
(
2015
).
43.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of finite-temperature open quantum systems
,”
Phys. Rev. Lett.
123
,
090402
(
2019
).
44.
H.
Gong
,
Y.
Wang
,
H. D.
Zhang
,
Q.
Qiao
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
, “
Equilibrium and transient thermodynamics: A unified dissipaton-space approach
,”
J. Chem. Phys.
153
,
154111
(
2020
).
45.
H.
Gong
,
Y.
Wang
,
H. D.
Zhang
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
, “
Thermodynamic free-energy spectrum theory for open quantum systems
,”
J. Chem. Phys.
153
,
214115
(
2020
).
46.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
(
1935
).
47.
R.
van Zon
,
L.
Hernández de la Peña
,
G. H.
Peslherbe
, and
J.
Schofield
, “
Quantum free-energy differences from nonequilibrium path integrals. I. Methods and numerical application
,”
Phys. Rev. E
78
,
041103
(
2008
).
48.
R.
van Zon
,
L.
Hernández de la Peña
,
G. H.
Peslherbe
, and
J.
Schofield
, “
Quantum free-energy differences from nonequilibrium path integrals. II. Convergence properties for the harmonic oscillator
,”
Phys. Rev. E
78
,
041104
(
2008
).
49.
P. L.
Du
,
Z. H.
Chen
,
Y.
Su
,
Y.
Wang
,
R. X.
Xu
, and
Y. J.
Yan
, “
Nonequilibrium system–bath entanglement theorem versus heat transport
,”
Chem. J. Chin. Univ.
42
,
2155
(
2021
).
50.
Y.
Su
,
H.-Y.
Qi
,
Z.-H.
Chen
,
Y.
Wang
,
R.-X.
Xu
, and
Y. J.
Yan
, “
Extended system-bath entanglement theorem for multiple bosonic or fermionic environments
,” arXiv:2401.09228 (
2024
).
You do not currently have access to this content.