A pseudospectral implementation of nonadiabatic derivative couplings in the Tamm–Dancoff approximation is reported, and the accuracy and efficiency of the pseudospectral nonadiabatic derivative couplings are studied. Our results demonstrate that the pseudospectral method provides mean absolute errors of 0.2%–1.9%, while providing a significant speedup. Benchmark calculations on fullerenes (Cn, n up to 100) using B3LYP achieved 10- to 15-fold, 8- to 17-fold, and 43- to 75-fold speedups for 6-31G**, 6-31++G**, and cc-pVTZ basis sets, respectively, when compared to the conventional spectral method.

1.
N. J.
Turro
,
Modern Molecular Photochemistry
(
University Science Books
,
Sausalito, CA 94965
,
1991
).
2.
3.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
6277
(
2001
).
4.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VCH
,
Weinheim
,
2005
).
5.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
136
(
4
),
1599
(
2014
).
6.
D. R.
Yarkony
,
Int. J. Quantum Chem.
31
,
91
(
1987
).
7.
Q.
Cui
,
K.
Morokuma
,
J. M.
Bowman
, and
S. J.
Klippenstein
,
J. Chem. Phys.
110
,
9469
(
1999
).
8.
P.
Avouris
,
W. M.
Gelbart
, and
M. A.
El-Sayed
,
Chem. Rev.
77
,
793
(
1977
).
9.
J. C.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
10.
Q.
Peng
,
Y.
Niu
,
Q.
Shi
,
X.
Gao
, and
Z.
Shuai
,
J. Chem. Theory Comput.
9
,
1132
(
2013
).
11.
M. J.
Bearpark
,
M. A.
Robb
, and
H.
Bernhard Schlegel
,
Chem. Phys. Lett.
223
,
269
(
1994
).
12.
X.
Zhang
and
J. M.
Herbert
,
J. Chem. Phys.
141
,
064104
(
2014
).
13.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
14.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
15.
S. M.
Parker
,
S.
Roy
, and
F.
Furche
,
Phys. Chem. Chem. Phys.
21
,
18999
(
2019
).
16.
L.
Wang
,
J.
Qiu
,
X.
Bai
, and
J.
Xu
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1435
(
2019
).
17.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
,
J. Phys. Chem. A
104
,
5161
(
2000
).
18.
D. R.
Yarkony
, in
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
), pp.
41
128
.
19.
S.
Matsika
and
P.
Krause
,
Annu. Rev. Phys. Chem.
62
,
621
(
2011
).
21.
M.
Baer
,
Beyond Born-Oppenheimer: Nonadiabatic Coupling Terms and Conical Intersections
(
Wiley
,
Hoboken, NJ
,
2006
).
22.
G. J.
Halász
,
Á.
Vibók
, and
M.
Baer
,
J. Chem. Phys.
127
,
144108
(
2007
).
23.
E.
Tapavicza
,
G. D.
Bellchambers
,
J. C.
Vincent
, and
F.
Furche
,
Phys. Chem. Chem. Phys.
15
,
18336
(
2013
).
24.
H.
Guo
and
D. R.
Yarkony
,
Phys. Chem. Chem. Phys.
18
,
26335
(
2016
).
25.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
,
Chem. Rev.
120
(
4
),
2215
2287
(
2020
).
26.
H.
Song
,
S. A.
Fischer
,
Y.
Zhang
,
C. J.
Cramer
,
S.
Mukamel
,
N.
Govind
, and
S.
Tretiak
,
J. Chem. Theory Comput.
16
(
10
),
6418
(
2020
).
27.
H.
Song
,
V. M.
Freixas
,
S.
Fernandez-Alberti
,
A. J.
White
,
Y.
Zhang
,
S.
Mukamel
,
N.
Govind
, and
S.
Tretiak
,
J. Chem. Theory Comput.
17
,
3629
(
2021
).
28.
B.
O’Regan
and
M.
Gratzel
,
Nature
353
,
737
(
1991
).
29.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
,
J. Am. Chem. Soc.
129
,
9333
(
2007
).
30.
B. H.
Lengsfield
III
and
D. R.
Yarkony
,
Adv. Chem. Phys.
82
(
2
),
1
(
1992
).
31.
B. H.
Lengsfield
III
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Chem. Phys.
81
,
4549
(
1984
).
32.
P.
Saxe
,
B. H.
Lengsfield
III
, and
D. R.
Yarkony
,
Chem. Phys. Lett.
113
,
159
(
1985
).
33.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
34.
T.
Ichino
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
130
,
174015
(
2009
).
35.
A.
Tajti
and
P. G.
Szalay
,
J. Chem. Phys.
131
,
124104
(
2009
).
36.
V.
Chernyak
and
S.
Mukamel
,
J. Chem. Phys.
112
,
3572
(
2000
).
37.
M.
Tommasini
,
V.
Chernyak
, and
S.
Mukamel
,
Int. J. Quantum Chem.
85
,
225
(
2001
).
38.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Rothlisberger
,
Phys. Rev. Lett.
98
,
023001
(
2007
).
39.
C.
Hu
,
O.
Sugino
, and
Y.
Tateyama
,
J. Chem. Phys.
131
,
114101
(
2009
).
40.
R.
Send
and
F.
Furche
,
J. Chem. Phys.
132
,
044107
(
2010
).
41.
S.
Fatehi
,
E.
Alguire
,
Y.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
234105
(
2011
).
42.
Z.
Li
and
W.
Liu
,
J. Chem. Phys.
141
,
014110
(
2014
).
43.
Z.
Li
,
B.
Suo
, and
W.
Liu
,
J. Chem. Phys.
141
,
244105
(
2014
).
44.
Q.
Ou
,
S.
Fatehi
,
E.
Alguire
,
Y.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
141
,
024114
(
2014
).
45.
Q.
Ou
,
G. D.
Bellchambers
,
F.
Furche
, and
J. E.
Subotnik
,
J. Chem. Phys.
142
,
064114
(
2015
).
46.
X.
Zhang
and
J. M.
Herbert
,
J. Chem. Phys.
142
,
064109
(
2015
).
47.
N.
Bellonzi
,
G. R.
Medders
,
E.
Epifanovsky
, and
J. E.
Subotnik
,
J. Chem. Phys.
150
,
014106
(
2019
).
48.
N.
Bellonzi
,
E.
Alguire
,
S.
Fatehi
,
Y.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
152
,
044112
(
2020
).
49.
I.
Fdez Galván
,
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
,
J. Chem. Theory Comput.
12
,
3636
(
2016
).
50.
R. A.
Friesner
,
Chem. Phys. Lett.
116
,
39
(
1985
).
51.
R. A.
Friesner
,
J. Chem. Phys.
85
,
1462
(
1986
).
52.
R. A.
Friesner
,
J. Chem. Phys.
86
,
3522
(
1987
).
53.
R. A.
Friesner
,
J. Phys. Chem.
92
,
3091
(
1988
).
54.
55.
C.
Ko
,
D. K.
Malick
,
D. A.
Braden
,
R. A.
Friesner
, and
T.
Martinez
,
J. Chem. Phys.
128
,
104103
(
2008
).
56.
Y.
Cao
,
T.
Hughes
,
D.
Giesen
,
M. D.
Halls
,
A.
Goldberg
,
T. R.
Vadicherla
,
M.
Sastry
,
B.
Patel
,
W.
Sherman
,
A. L.
Weisman
, and
R. A.
Friesner
,
J. Comput. Chem.
37
,
1425
(
2016
).
57.
Y.
Cao
,
M. D.
Halls
, and
R. A.
Friesner
,
J. Chem. Phys.
155
,
024115
(
2021
).
58.
N. C.
Handy
and
H. F.
Schaefer
III
,
J. Chem. Phys.
81
,
5031
(
1984
).
59.
A. D.
Bochevarov
,
E.
Harder
,
T. F.
Hughes
,
J. R.
Greenwood
,
D. A.
Braden
,
D. M.
Philipp
,
D.
Rinaldo
,
M. D.
Halls
,
J.
Zhang
, and
R. A.
Friesner
,
Int. J. Quantum Chem.
113
,
2110
(
2013
).
60.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem. Symp.
13
,
225
(
1979
).
61.
P. M. W.
Gill
,
M.
Head-Gordon
, and
J. A.
Pople
,
J. Phys. Chem.
94
,
5564
(
1990
).
62.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Int. J. Quantum Chem.
40
,
745
(
1991
).
63.
P. M. W.
Gill
and
J. A.
Pople
,
Int. J. Quantum Chem.
40
,
753
(
1991
).
65.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
66.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
67.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
68.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz
15
,
48
(
1975
).
69.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz
16
,
293
(
1976
).
70.
V. I.
Lebedev
,
Sibirsk. Mat. Zh.
18
,
132
(
1977
).
71.
A. H.
Stroud
,
Approximate Calculation of Multiple Integrals
(
Prentice-Hall
,
New York
,
1971
).
72.
B. H.
Greeley
,
T. V.
Russo
,
D. T. R. A.
MainzFriesner
,
J. M.
Langlois
,
W. A.
Goddard
III
,
R. E.
Donnelly
, and
M. N.
Ringnalda
,
J. Chem. Phys.
101
,
4028
(
1994
).
73.
M. E.
Mura
and
P. J.
Knowles
,
J. Chem. Phys.
104
,
9848
(
1996
).
74.
J. M.
Perez-Jorda
,
A. D.
Becke
, and
E.
San-Fabian
,
J. Chem. Phys.
100
,
6520
(
1994
).
75.
J.
Baker
,
J.
Andzelm
,
A.
Scheiner
, and
B.
Delley
,
J. Chem. Phys.
101
,
8894
(
1994
).
76.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
77.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
78.
Y.
Cao
,
M. D.
Halls
,
T. R.
Vadicherla
, and
R. A.
Friesner
,
J. Comput. Chem.
42
,
2089
(
2021
).

Supplementary Material

You do not currently have access to this content.