It is shown that the four-component (4C), quasi-four-component (Q4C), and exact two-component (X2C) relativistic Hartree–Fock equations can be implemented in a unified manner by making use of the atomic nature of the small components of molecular 4-spinors. A model density matrix approximation can first be invoked for the small-component charge/current density functions, which gives rise to a static, pre-molecular mean field to be combined with the one-electron term. As a result, only the nonrelativistic-like two-electron term of the 4C/Q4C/X2C Fock matrix needs to be updated during the iterations. A “one-center small-component” approximation can then be invoked in the evaluation of relativistic integrals, that is, all atom-centered small-component basis functions are regarded as extremely localized near the position of the atom to which they belong such that they have vanishing overlaps with all small- or large-component functions centered at other nuclei. Under these approximations, the 4C, Q4C, and X2C mean-field and many-electron Hamiltonians share precisely the same structure and accuracy. Beyond these is the effective quantum electrodynamics Hamiltonian that can be constructed in the same way. Such approximations lead to errors that are orders of magnitude smaller than other sources of errors (e.g., truncation errors in the one- and many-particle bases as well as uncertainties of experimental measurements) and are, hence, safe to use for whatever purposes. The quaternion forms of the 4C, Q4C, and X2C equations are also presented in the most general way, based on which the corresponding Kramers-restricted open-shell variants are formulated for “high-spin” open-shell systems.

1.
P.
Schwerdtfeger
,
Relativistic Electronic Structure Theory: Part 1. Fundamentals
(
Elsevier
,
2002
).
2.
I. P.
Grant
,
Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation
(
Springer
,
New York
,
2007
).
3.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
4.
M.
Barysz
and
Y.
Ishikawa
,
Relativistic Methods for Chemists
(
Springer Science & Business Media
,
2010
), Vol.
10
.
5.
U.
Kaldor
and
S.
Wilson
,
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
(
Springer Science & Business Media
,
2013
), Vol.
11
.
6.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science
, 2nd ed. (
Wiley VCH
,
Weinheim
,
2015
).
7.
W.
Liu
,
Handbook of Relativistic Quantum Chemistry
(
Springer
,
Berlin
,
2017
).
9.
W.
Liu
,
Int. J. Quantum Chem.
114
,
983
(
2014
).
10.
W.
Liu
,
Int. J. Quantum Chem.
115
,
631
(
2015
);
Erratum,
116
,
971
(
2016
).
12.
14.
H.
Nakai
,
Bull. Chem. Soc. Jpn.
94
,
1664
(
2021
).
15.
W.
Liu
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
,
e1652
(
2023
).
16.
G. T.
Te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
17.
T.
Yanai
,
H.
Nakano
,
T.
Nakajima
,
T.
Tsuneda
,
S.
Hirata
,
Y.
Kawashima
,
Y.
Nakao
,
M.
Kamiya
,
H.
Sekino
, and
K.
Hirao
, in
Computational Science – ICCS 2003
,
Lecture Notes in Computer Science
, edited by
P. M. A.
Sloot
,
D.
Abramson
,
A. V.
Bogdanov
,
Y. E.
Gorbachev
,
J. J.
Dongarra
, and
A. Y.
Zomaya
(
Springer
,
Berlin, Heidelberg
,
2003
), Vol.
2660
, pp.
84
95
.
18.
T.
Nakajima
,
M.
Katouda
,
M.
Kamiya
, and
Y.
Nakatsuka
,
Int. J. Quantum Chem.
115
,
349
(
2015
).
19.
M.
Hayami
,
J.
Seino
,
Y.
Nakajima
,
M.
Nakano
,
Y.
Ikabata
,
T.
Yoshikawa
,
T.
Oyama
,
K.
Hiraga
,
S.
Hirata
, and
H.
Nakai
,
J. Comput. Chem.
39
,
2333
(
2018
).
20.
T.
Shiozaki
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
21.
Y.
Garniron
,
T.
Applencourt
,
K.
Gasperich
,
A.
Benali
,
A.
Ferté
,
J.
Paquier
,
B.
Pradines
,
R.
Assaraf
,
P.
Reinhardt
,
J.
Toulouse
et al,
J. Chem. Theory Comput.
15
,
3591
(
2019
).
22.
J. M. H.
Olsen
,
S.
Reine
,
O.
Vahtras
,
E.
Kjellgren
,
P.
Reinholdt
,
K. O.
Hjorth Dundas
,
X.
Li
,
J.
Cukras
,
M.
Ringholm
, and
E.
Hedeg
et al, “
Dalton project: A Python platform for molecular-and electronic-structure simulations of complex systems
,”
J. Chem. Phys.
152
(
21
),
214115
(
2020
).
23.
E.
Apra
,
E. J.
Bylaska
,
W. A.
De Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
,
J. Chem. Phys.
152
,
184102
(
2020
).
24.
D. G.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
et al,
J. Chem. Phys.
152
,
184108
(
2020
).
25.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
26.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
et al,
J. Chem. Phys.
152
,
144107
(
2020
).
27.
F.
Aquilante
,
J.
Autschbach
,
A.
Baiardi
,
S.
Battaglia
,
V. A.
Borin
,
L. F.
Chibotaru
,
I.
Conti
,
L.
De Vico
,
M.
Delcey
,
I.
Fdez Galván
et al,
J. Chem. Phys.
152
,
214117
(
2020
).
28.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
et al,
J. Chem. Phys.
152
,
184107
(
2020
).
29.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
,
J. Chem. Phys.
152
,
224108
(
2020
).
30.
E.
Epifanovsky
,
A. T.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
et al,
J. Chem. Phys.
155
,
084801
(
2021
).
31.
L.
Birnoschi
and
N. F.
Chilton
,
J. Chem. Theory Comput.
18
,
4719
(
2022
).
32.
M.
De Santis
,
L.
Storchi
,
L.
Belpassi
,
H. M.
Quiney
, and
F.
Tarantelli
,
J. Chem. Theory Comput.
16
,
2410
(
2020
).
33.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
et al,
J. Chem. Phys.
153
,
024109
(
2020
).
34.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
,
J. Chem. Phys.
152
,
204104
(
2020
).
35.
D. B.
Williams-Young
,
A.
Petrone
,
S.
Sun
,
T. F.
Stetina
,
P.
Lestrange
,
C. E.
Hoyer
,
D. R.
Nascimento
,
L.
Koulias
,
A.
Wildman
,
J.
Kasper
,
J. J.
Goings
,
F.
Ding
,
A. E.
DePrince
, III
,
E. F.
Valeev
, and
X.
Li
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1436
(
2020
).
36.
M.
Repisky
,
S.
Komorovsky
,
M.
Kadek
,
L.
Konecny
,
U.
Ekström
,
E.
Malkin
,
M.
Kaupp
,
K.
Ruud
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Chem. Phys.
152
,
184101
(
2020
).
37.
Y.
Zhang
,
B.
Suo
,
Z.
Wang
,
N.
Zhang
,
Z.
Li
,
Y.
Lei
,
W.
Zou
,
J.
Gao
,
D.
Peng
,
Z.
Pu
,
Y.
Xiao
,
Q.
Sun
,
F.
Wang
,
Y.
Ma
,
X.
Wang
,
Y.
Guo
, and
W.
Liu
,
J. Chem. Phys.
152
,
064113
(
2020
).
38.
The acronym “X2C” (pronounced as “ecstacy”) for exact two-component Hamiltonians was proposed by
W.
Liu
after intensive discussions with
H. J. A.
Jensen
,
W.
Kutzelnigg
,
T.
Saue
, and
L.
Visscher
during the Twelfth International Conference on the Applications of Density Functional Theory (DFT-2007),
Amsterdam
,
August 26–30, 2007
. Note that the “exact” here emphasizes that all the solutions of the matrix Dirac equation can be reproduced up to machine accuracy. It is particularly meaningful when compared with approximate two-component Hamiltonians.
41.
D.
Peng
and
M.
Reiher
,
Theor. Chem. Acc.
131
,
1081
(
2012
).
42.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
43.
C.
Chang
,
M.
Pelissier
, and
P.
Durand
,
Phys. Scr.
34
,
394
(
1986
).
44.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
46.
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
).
47.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
48.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
);
Erratum
125
,
149901
(
2006
).
49.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
50.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
51.
J.
Liu
and
L.
Cheng
,
J. Chem. Phys.
148
,
144108
(
2018
).
52.
C.
Zhang
and
L.
Cheng
,
J. Phys. Chem. A
126
,
4537
(
2022
).
53.
S.
Knecht
,
M.
Repisky
,
H. J. A.
Jensen
, and
T.
Saue
,
J. Chem. Phys.
157
,
114106
(
2022
).
54.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
55.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
56.
B.
Swirles
,
Philos. Trans. R. Soc., A
152
,
625
(
1935
).
57.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
58.
A.
Rosen
and
D. E.
Ellis
,
J. Chem. Phys.
62
,
3039
(
1975
).
59.
C.
Wood
and
N.
Pyper
,
Philos. Trans. R. Soc., A
320
,
71
(
1986
).
60.
W.
Liu
, Ph.D. thesis,
Peking University
,
1995
.
61.
W.
Liu
,
G.
Hong
,
L.
Li
, and
G.
Xu
,
Chin. Sci. Bull.
41
,
651
(
1996
).
62.
W.
Liu
,
G.
Hong
,
D.
Dai
,
L.
Li
, and
M.
Dolg
,
Theor. Chem. Acc.
96
,
75
(
1997
).
63.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
64.
W.
Liu
, “
No-pair relativistic Hamiltonians: Q4C and X2C
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer-Verlag
,
Berlin
,
2017
), pp.
375
393
.
65.
W.
Liu
and
I.
Lindgren
,
J. Chem. Phys.
139
,
014108
(
2013
);
[PubMed]
Erratum
144
,
049901
(
2016
).
66.
V. M.
Shabaev
,
I.
Tupitsyn
, and
V. A.
Yerokhin
,
Phys. Rev. A
88
,
012513
(
2013
).
67.
V. M.
Shabaev
,
I.
Tupitsyn
, and
V. A.
Yerokhin
,
Comput. Phys. Commun.
223
,
69
(
2018
).
69.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
112
,
3540
(
2000
).
71.
C. E.
Hoyer
,
L.
Lu
,
H.
Hu
,
K. D.
Shumilov
,
S.
Sun
,
S.
Knecht
, and
X.
Li
,
J. Chem. Phys.
158
,
044101
(
2023
).
72.
W.
Liu
,
Phys. Chem. Chem. Phys.
14
,
35
(
2012
).
73.
Q.
Sun
,
W.
Liu
, and
W.
Kutzelnigg
,
Theor. Chem. Acc.
129
,
423
(
2011
).
74.
K.
Fægri
, Jr.
,
Theor. Chem. Acc.
105
,
252
(
2001
).
75.
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
201103
(
2007
).
76.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
77.
G. T.
de Jong
and
L.
Visscher
,
Theor. Chem. Acc.
107
,
304
(
2002
).
78.
S.
Sun
,
J.
Ehrman
,
T.
Zhang
,
Q.
Sun
,
K. G.
Dyall
, and
X.
Li
,
J. Chem. Phys.
158
,
171101
(
2023
).
79.
S.
Banerjee
,
T.
Zhang
,
K. G.
Dyall
, and
X.
Li
,
J. Chem. Phys.
159
,
114119
(
2023
).
80.
C.
Huang
,
W.
Liu
,
Y.
Xiao
, and
M. R.
Hoffmann
,
J. Comput. Chem.
38
,
2481
(
2017
);
[PubMed]
Erratum,
39
,
338
(
2018
).
81.
C.
Huang
and
W.
Liu
,
J. Comput. Chem.
40
,
1023
(
2019
).
82.
J.
Meyer
,
Int. J. Quantum Chem.
33
,
445
(
1988
).
83.
84.
A. V.
Matveev
,
M.
Mayer
, and
N.
Rösch
,
Comput. Phys. Commun.
160
,
91
(
2004
).
85.
D.
Peng
,
J.
Ma
, and
W.
Liu
,
Int. J. Quantum Chem.
109
,
2149
(
2009
).
86.
D.
Peng
and
K.
Hirao
,
Theor. Chem. Acc.
129
,
517
(
2011
).
88.
B. T.
Saue
,
K.
Fægri
,
T.
Helgaker
, and
O.
Gropen
,
Mol. Phys.
91
,
937
(
1997
).
89.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
90.
M. K.
Armbruster
,
J. Chem. Phys.
147
,
054101
(
2017
).
91.
92.
M.
Nakano
,
R.
Nakamura
,
J.
Seino
, and
H.
Nakai
,
Int. J. Quantum Chem.
117
,
e25366
(
2017
).
93.
T.
Saue
and
L.
Visscher
, in
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
, edited by
U.
Kaldor
and
S.
Wilson
(
Kluwer Academic
,
Dordrecht
,
2003
), p.
211
.
94.
W.
Liu
,
Prog. Chem.
19
,
833
(
2007
).
96.
W.
Liu
and
C.
van Wüllen
,
J. Chem. Phys.
110
,
3730
(
1999
).
97.
W.
Liu
,
C.
van Wüllen
,
Y. K.
Han
,
Y. J.
Choi
, and
Y. S.
Lee
,
Adv. Quantum Chem.
39
,
325
(
2001
).
98.
W.
Liu
,
C.
van Wüllen
,
F.
Wang
, and
L.
Li
,
J. Chem. Phys.
116
,
3626
(
2002
).
99.
W.
Liu
,
F.
Wang
, and
L.
Li
, “
Relativistic density functional theory: The BDF program package
,” in
Recent Advances in Relativistic Molecular Theory
, edited by
K.
Hirao
and
Y.
Ishikawa
(
World Scientific
,
Singapore
,
2004
), pp.
257
282
.
100.
W.
Liu
,
F.
Wang
, and
L.
Li
, “
Recent advances in relativistic density functional methods
,” in
Encyclopedia of Computational Chemistry
, edited by
P.
von Ragué Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
, and
H. F.
SchaeferIII
(
Wiley
,
Chichester, UK
,
2004
).
101.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
102.
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
).
103.
D.
Kędziera
and
M.
Barysz
,
Chem. Phys. Lett.
446
,
176
(
2007
).
104.
H. J. A.
Jensen
, in
Proceedings of the International Conference on Relativistic Effects in Heavy Element Chemistry and Physics
,
Mülheim/Ruhr
,
6–10 April 2005
.
105.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
106.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
107.
D.
Peng
and
K.
Hirao
,
J. Chem. Phys.
130
,
044102
(
2009
).
108.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
109.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
137
,
154114
(
2012
).
110.
M.
Filatov
,
J. Chem. Phys.
125
,
107101
(
2006
).
111.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
141
,
054111
(
2014
).
112.
W.
Xu
,
J.
Ma
,
D.
Peng
,
W.
Zou
,
W.
Liu
, and
V.
Staemmler
,
Chem. Phys.
356
,
219
(
2009
).
113.
W.
Xu
,
Y.
Zhang
, and
W.
Liu
,
Sci. China, Ser. B: Chem..
52
,
1945
(
2009
).
114.
Y.
Zhang
,
W.
Xu
,
Q.
Sun
,
W.
Zou
, and
W.
Liu
,
J. Comput. Chem.
31
,
532
(
2010
).
115.
Z.
Li
,
B.
Suo
,
Y.
Zhang
,
Y.
Xiao
, and
W.
Liu
,
Mol. Phys.
111
,
3741
(
2013
).
116.
Z.
Cao
,
Z.
Li
,
F.
Wang
, and
W.
Liu
,
Phys. Chem. Chem. Phys.
19
,
3713
(
2017
).
117.
W.
Liu
and
Y.
Xiao
,
Chem. Soc. Rev.
47
,
4481
(
2018
).
118.
Q.
Sun
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
131
,
081101
(
2009
).
119.
Q.
Sun
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
137
,
174105
(
2012
).
120.
W.
Zou
,
G.
Guo
,
B.
Suo
, and
W.
Liu
,
J. Chem. Theory Comput.
16
,
1541
(
2020
).
121.
R.
Zhao
,
Y.
Zhang
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
144
,
044105
(
2016
).
122.
D.
Peng
and
M.
Reiher
,
J. Chem. Phys.
136
,
244108
(
2012
).
123.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
136
,
244102
(
2012
).
124.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
137
,
144101
(
2012
).
125.
P. K.
Tamukong
,
M. R.
Hoffmann
,
Z.
Li
, and
W.
Liu
,
J. Phys. Chem. A
118
,
1489
(
2014
).
126.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
127.
L.
Cheng
and
C.
Zhang
, private communication (2023).
128.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
141
,
164107
(
2014
).
129.
C.
Zhang
and
L.
Cheng
,
Mol. Phys.
118
,
e1768313
(
2020
).
130.
Z.
Li
and
W.
Liu
, “
Spin separation of relativistic Hamiltonians
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer-Verlag
,
Berlin
,
2017
), pp.
411
447
.
131.
W.
Liu
, “
With-pair relativistic Hamiltonians
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer-Verlag
,
Berlin
,
2017
), pp.
345
373
.
132.
W.
Liu
,
J. Chem. Phys.
(published online
2024
).
133.
L.
Halbert
,
M. L.
Vidal
,
A.
Shee
,
S.
Coriani
, and
A.
Severo Pereira Gomes
,
J. Chem. Theory Comput.
17
,
3583
(
2021
).
134.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
135.
J.
Netz
,
A. O.
Mitrushchenkov
, and
A.
Köhn
,
J. Chem. Theory Comput.
17
,
5530
(
2021
).
136.
N.
Zhang
,
Y.
Xiao
, and
W.
Liu
,
J. Phys.: Condens. Matter
34
,
224007
(
2022
).
137.
Y.
Guo
,
N.
Zhang
, and
W.
Liu
,
J. Chem. Theory Comput.
19
,
6668
(
2023
).
138.
Z.
Lin
,
C.
Zhang
, and
L.
Cheng
,
Mol. Phys.
2023
e2256423
.
139.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
,
H.
Hu
,
E. F.
Valeev
,
Q.
Sun
, and
X.
Li
,
J. Chem. Theory Comput.
17
,
3388
(
2021
).
140.
S.
Sun
,
J.
Ehrman
,
Q.
Sun
, and
X.
Li
,
J. Chem. Phys.
157
,
064112
(
2022
).
141.
J. J.
Dongarra
,
J. R.
Gabriel
,
D. D.
Koelling
, and
J. H.
Wilkinson
,
J. Comput. Phys.
54
,
278
(
1984
).
142.
J. J.
Dongarra
,
J. R.
Gabriel
,
D. D.
Koelling
, and
J. H.
Wilkinson
,
Linear Algebra Appl.
60
,
27
(
1984
).
144.
M.
Nakano
,
R.
Nakamura
,
J.
Seino
, and
H.
Nakai
,
Int. J. Quantum Chem.
117
,
e25356
(
2017
).
145.
A.
Rosen
,
D.
Ellis
,
H.
Adachi
, and
F.
Averill
,
J. Chem. Phys.
65
,
3629
(
1976
).
146.
D. E.
Ellis
and
G.
Goodman
,
Int. J. Quantum Chem.
25
,
185
(
1984
).
147.
F.
Wang
and
W.
Liu
,
J. Chin. Chem. Soc.
50
,
597
(
2003
).
148.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
149.
B.
Plakhutin
,
E.
Gorelik
, and
N.
Breslavskaya
,
J. Chem. Phys.
125
,
204110
(
2006
).
151.
J.
Thyssen
, “
Development and applications of methods for correlated relativistic calculations of molecular properties
,” Ph.D. thesis,
University of Southern Denmark
,
2001
.
You do not currently have access to this content.