The identification and analysis of quantum state-specific effects can significantly deepen our understanding of detailed photodissociation dynamics. Here, we report an experimental investigation on the vibrational state-mediated photodissociation of the OCS+ cation via the A2Π1/21 0 ν3) states by using the velocity map ion imaging technique over the photolysis wavelength range of 263–294 nm. It was found that the electronically excited S+ product channel S+(2Du) + CO (X1Σ+) was significantly enhanced when the ν1 and ν3 vibrational modes were excited. Clear deviations in the branching ratios of the electronically excited S+ channel were observed when the vibrational modes ν1 and ν3 were selectively excited. The results reveal that vibrationally excited states play a vital role in influencing the nonadiabatic couplings in the photodissociation process.

2.
R. L.
Vander Wal
and
F. F.
Crim
,
J. Phys. Chem.
93
,
5331
(
1989
).
5.
F. F.
Crim
,
J. Phys. Chem. A
100
,
12725
(
1996
).
7.
A.
Sinha
,
R. L.
Vander Wal
, and
F. F.
Crim
,
J. Chem. Phys.
91
,
2929
(
1989
).
8.
T. M.
Ticich
et al,
J. Chem. Phys.
87
,
5820
(
1987
).
9.
M.
Brouard
et al,
Chem. Phys. Lett.
150
,
6
(
1988
).
10.
R. L.
Vander Wal
,
J. L.
Scott
, and
F. F.
Crim
,
J. Chem. Phys.
94
,
1859
(
1991
).
11.
M. D.
Likar
,
J. E.
Baggott
, and
F. F.
Crim
,
J. Chem. Phys.
90
,
6266
(
1989
).
12.
M.
Chin
and
D. D.
Davis
,
J. Geophys. Res.: Atmos.
100
,
8993
, (
1995
).
13.
S. A.
Montzka
et al,
J. Geophys. Res.: Atmos.
112
,
D09302
, (
2007
).
14.
L.-S.
Wang
et al,
J. Electron Spectrosc. Relat. Phenom.
47
,
167
(
1988
).
15.
J. H. D.
Eland
,
Int. J. Mass Spectrom. Ion Phys.
12
,
389
(
1973
).
16.
C.
Chang
,
C. -Y.
Luo
, and
K.
Liu
,
J. Phys. Chem. A
109
,
1022
(
2005
).
17.
M.
Sommavilla
and
F.
Merkt
,
J. Phys. Chem. A
108
,
9970
(
2004
).
18.
R.
Kakoschke
,
U.
Boesl
,
J.
Hermann
, and
E. W.
Schlag
,
Chem. Phys. Lett.
119
,
467
(
1985
).
19.
R.
Weinkauf
and
U.
Boesl
,
J. Chem. Phys.
101
,
8482
(
1994
).
20.
W. W.
Chen
et al,
J. Chem. Phys.
116
,
5612
(
2002
).
21.
J.
Huang
et al,
J. Chem. Phys.
115
,
6012
(
2001
).
22.
M.
Beckert
,
S. J.
Greaves
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
5
,
308
(
2003
).
23.
N.
Hansen
et al,
J. Chem. Phys.
118
,
10485
(
2003
).
24.
O. P. J.
Vieuxmaire
et al,
Mol. Phys.
103
,
2437
(
2005
).
25.
W.
Li
et al,
Phys. Chem. Chem. Phys.
8
,
2950
(
2006
).
26.
B.
Uselman
et al,
J. Phys. Chem. A
110
,
1278
(
2006
).
27.
A. D.
Webb
et al,
J. Chem. Phys.
125
,
204312
(
2006
).
28.
A. D.
Webb
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
127
,
224307
(
2007
).
29.
J.
Li
et al,
J. Chem. Phys.
134
,
114309
(
2011
).
30.
C.
Zhang
et al,
Phys. Chem. Chem. Phys.
14
,
2468
(
2012
).
31.
B. Z.
Chen
,
H. B.
Chang
, and
M. B.
Huang
,
J. Chem. Phys.
125
,
054310
(
2006
).
32.
C. Y. R.
Wu
,
T. S.
Yih
and
D. L.
Judge
,
Int. J. Mass Spectrom. Ion Processes
63
,
303
(
1986
).
33.
M. J.
Hubin-Franskin
et al,
Chem. Phys.
209
,
143
(
1996
).
35.
D. L.
Judge
and
M.
Ogawa
,
J. Chem. Phys.
51
,
2035
(
1969
).
36.
J. J.
Lin
,
J. G.
Zhou
,
W. C.
Shiu
, and
K. P.
Liu
,
Rev. Sci. Instrum.
74
,
2495
(
2003
).
37.
38.
39.
40.
W.
Chen
et al,
J. Phys. Chem. Lett.
10
,
4783
(
2019
).
41.
C.
Luo
et al,
J. Chem. Phys.
158
,
164304
(
2023
).
42.
F.
Xu
et al,
Chin. J. Chem. Phys.
33
,
691
(
2020
).
43.
44.
Z. W.
Li
et al,
J. Phys. Chem. Lett.
13
,
815
(
2022
).
45.
S.
Morse
et al,
Int. J. Mass Spectrom.
184
,
67
(
1999
).
46.
S.
Stimson
,
M.
Evans
,
C. Y.
Ng
, and
P.
Rosmus
,
J. Chem. Phys.
108
,
6205
(
1998
).
You do not currently have access to this content.