A merged potential energy surface (PES) is introduced for CO + CO collisions by combining a recent full-dimensional ab initio PES [Chen et al. J. Chem. Phys. 153, 054310 (2020)] and analytical long-range multipolar interactions. This merged PES offers a double advantage: it retains the precision of the ab initio PES in describing the van der Waals well and repulsive short range while providing an accurate physical description of long-range interaction; it significantly reduces the computational time required for trajectory integration since the long-range portion of the ab initio PES (involving numerous neural network fitting parameters) is now replaced by the analytical model potential. Based on the present merged PES, mixed Quantum-Classical (MQC) calculations, which capture quantum effects related to vibrational motion, align with a range of experimental data, including transport properties, vibrational energy transfer between CO and its isotoplogues, as well as rate coefficients for V–V and V–T/R processes. Notably, the original ab initio PES yields V–T/R rate coefficients at low temperatures that are significantly higher than the experimental data due to the artificial contribution of its unphysical long-range potential. In addition to conducting extensive MQC calculations to obtain raw data for V–V and V–T/R rate coefficients, we employ Gaussian process regression to predict processes lacking computed MQC data, thereby completing the considered V–V and V–T/R datasets. These extensive rate coefficient datasets, particularly for V–T/R processes, are unprecedented and reveal the significant role played by V–T/R processes at high temperatures, emphasizing the necessity of incorporating both V–V and V–T/R processes in the applications.

1.
J.
Chen
,
J.
Li
,
J. M.
Bowman
, and
H.
Guo
, “
Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface
,”
J. Chem. Phys.
153
,
054310
(
2020
).
2.
M.
Capitelli
,
C. M.
Ferreira
,
B. F.
Gordiets
, and
A. I.
Osipov
,
Plasma Kinetics in Atmospheric Gases
(
Springer Science & Business Media
,
2013
), Vol.
31
.
3.
M.
López-Valverde
,
E.
Lellouch
, and
A.
Coustenis
, “
Carbon monoxide fluorescence from Titan’s atmosphere
,”
Icarus
175
,
503
521
(
2005
).
4.
J. W.
Rich
, “
Kinetic modeling of the high-power carbon monoxide laser
,”
J. Appl. Phys.
42
,
2719
2730
(
1971
).
5.
G.
Billing
,
C.
Coletti
,
A.
Kurnosov
, and
A.
Napartovich
, “
Sensitivity of molecular vibrational dynamics to energy exchange rate constants
,”
J. Phys. B: At., Mol. Opt. Phys.
36
,
1175
(
2003
).
6.
A.
Ionin
,
I.
Kinyaevskiy
,
Y. M.
Klimachev
,
A.
Kotkov
, and
A. Y.
Kozlov
, “
Frequency tunable co laser operating on the highest vibrational transition with wavelength of 8.7 μm
,”
Opt. Lett.
42
,
498
501
(
2017
).
7.
D.
He
,
L.
Shi
,
D.
Nativel
,
J.
Herzler
,
M.
Fikri
, and
C.
Schulz
, “
CO-concentration and temperature measurements in reacting CH4/O2 mixtures doped with diethyl ether behind reflected shock waves
,”
Combust. Flame
216
,
194
205
(
2020
).
8.
L.
Pietanza
,
G.
Colonna
, and
M.
Capitelli
, “
Non-equilibrium plasma kinetics of reacting CO: An improved state to state approach
,”
Plasma Sources Sci. Technol.
26
,
125007
(
2017
).
9.
A.
Aliat
,
E.
Kustova
, and
A.
Chikhaoui
, “
State-to-state reaction rates in gases with vibration–electronic–dissociation coupling: The influence on a radiative shock heated CO flow
,”
Chem. Phys.
314
,
37
47
(
2005
).
10.
Q.
Hong
,
X.
Wang
,
Y.
Hu
,
X.
Lin
, and
Q.
Sun
, “
Rebuilding experimental nonequilibrium radiation in shock-heated martian-like mixture flows using electronic state-to-state approach
,”
Int. J. Mod. Phys. B
34
,
2040084
(
2020
).
11.
M.
Cordiner
,
S.
Milam
,
N.
Biver
,
D.
Bockelée-Morvan
,
N.
Roth
,
E.
Bergin
,
E.
Jehin
,
A.
Remijan
,
S.
Charnley
,
M.
Mumma
et al, “
Unusually high CO abundance of the first active interstellar comet
,”
Nat. Astron.
4
,
861
866
(
2020
).
12.
D.
Bodewits
,
J.
Noonan
,
P.
Feldman
,
M.
Bannister
,
D.
Farnocchia
,
W.
Harris
,
J.-Y.
Li
,
K.
Mandt
,
J. W.
Parker
, and
Z.-X.
Xing
, “
The carbon monoxide-rich interstellar comet 2I/Borisov
,”
Nat. Astron.
4
,
867
871
(
2020
).
13.
R.
de Kok
,
P. G.
Irwin
,
N. A.
Teanby
,
E.
Lellouch
,
B.
Bézard
,
S.
Vinatier
,
C. A.
Nixon
,
L.
Fletcher
,
C.
Howett
,
S. B.
Calcutt
et al, “
Oxygen compounds in Titan’s stratosphere as observed by Cassini CIRS
,”
Icarus
186
,
354
363
(
2007
).
14.
M.
Capitelli
,
R.
Celiberto
,
G.
Colonna
,
E.
Fabrizio
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
, and
S.
Longo
,
Fundamental Aspects of Plasma Chemical Physics: Kinetics
(
Springer
,
2016
), Vol.
85
.
15.
D.
He
,
Q.
Hong
,
F.
Li
,
Q.
Sun
,
T.
Si
, and
X.
Luo
, “
Experimental and numerical studies on the thermal non-equilibrium behaviors of CO with Ar, He, and H2
,”
J. Chem. Phys.
159
,
234302
(
2023
).
16.
D.
Rapp
and
P.
Englander-Golden
, “
Resonant and near-resonant vibrational–vibrational energy transfer between molecules in collisions
,”
J. Chem. Phys.
40
,
573
575
(
1964
).
17.
R.
Sharma
and
C. A.
Brau
, “
Energy transfer in near-resonant molecular collisions due to long-range forces with application to transfer of vibrational energy from ν3 mode of CO2 to N2
,”
J. Chem. Phys.
50
,
924
930
(
1969
).
18.
W.
Jeffers
and
J. D.
Kelley
, “
Calculations of V–V transfer probabilities in CO–CO collisions
,”
J. Chem. Phys.
55
,
4433
4437
(
1971
).
19.
R.
Schwartz
,
Z.
Slawsky
, and
K.
Herzfeld
, “
Calculation of vibrational relaxation times in gases
,”
J. Chem. Phys.
20
,
1591
1599
(
1952
).
20.
E. H.
Kerner
, “
Note on the forced and damped oscillator in quantum mechanics
,”
Can. J. Phys.
36
,
371
377
(
1958
).
21.
S. M.
Jo
,
S.
Venturi
,
J. G.
Kim
, and
M.
Panesi
, “
Rovibrational internal energy transfer and dissociation of high-temperature oxygen mixture
,”
J. Chem. Phys.
158
,
064305
(
2023
).
22.
Q.
Hong
,
M.
Bartolomei
,
F.
Esposito
,
C.
Coletti
,
Q.
Sun
, and
F.
Pirani
, “
Reconciling experimental and theoretical vibrational deactivation in low-energy O + N2 collisions
,”
Phys. Chem. Chem. Phys.
23
,
15475
15479
(
2021
).
23.
G.
Billing
, “
The semiclassical treatment of molecular roto-vibrational energy transfer
,”
Comput. Phys. Rep.
1
,
237
296
(
1984
).
24.
Q.
Hong
,
Q.
Sun
,
M.
Bartolomei
,
F.
Pirani
, and
C.
Coletti
, “
Inelastic rate coefficients based on an improved potential energy surface for N2 + N2 collisions in a wide temperature range
,”
Phys. Chem. Chem. Phys.
22
,
9375
9387
(
2020
).
25.
Q.
Hong
,
Q.
Sun
,
F.
Pirani
,
M. A.
Valentín-Rodríguez
,
R.
Hernández-Lamoneda
,
C.
Coletti
,
M.
Hernández
, and
M.
Bartolomei
, “
Energy exchange rate coefficients from vibrational in elastic O2(Σg3) + O2(Σg3) collisions on a new spin-averaged potential energy surface
,”
J. Chem. Phys.
154
,
064304
(
2021
).
26.
M.
Cacciatore
and
G.
Due Billing
, “
Semiclassical calculation of VV and VT rate coeffecients in CO
,”
Chem. Phys.
58
,
395
407
(
1981
).
27.
C.
Coletti
and
G. D.
Billing
, “
Isotopic effects on vibrational energy transfer in CO
,”
J. Chem. Phys.
111
,
3891
3897
(
1999
).
28.
A.
Van der Pol
,
A.
Van der Avoird
, and
P.
Wormer
, “
An ab initio intermolecular potential for the carbon monoxide dimer (CO)2
,”
J. Chem. Phys.
92
,
7498
7504
(
1990
).
29.
C.
Coletti
and
G. D.
Billing
, “
Rate constants for energy transfer in carbon monoxide
,”
J. Chem. Phys.
113
,
4869
4875
(
2000
).
30.
G.
Vissers
,
P.
Wormer
, and
A.
Van Der Avoird
, “
An ab initio CO dimer interaction potential and the computation of the rovibrational spectrum of (CO) 2
,”
Phys. Chem. Chem. Phys.
5
,
4767
4771
(
2003
).
31.
R.
Dawes
,
X.-G.
Wang
, and
T.
Carrington
, Jr.
, “
CO dimer: New potential energy surface and rovibrational calculations
,”
The Journal of Physical Chemistry A
117
,
7612
7630
(
2013
).
32.
G.
Vissers
,
A.
Heßelmann
,
G.
Jansen
,
P.
Wormer
, and
A.
Van Der Avoird
, “
New CO–CO interaction potential tested by rovibrational calculations
,”
J. Chem. Phys.
122
,
054306
(
2005
).
33.
C.
Martí
,
A.
Laganà
,
L.
Pacifici
,
F.
Pirani
, and
C.
Coletti
, “
A quantum-classical study of the effect of the long range tail of the potential on reactive and inelastic OH + H2 dynamics
,”
Chem. Phys. Lett.
769
,
138404
(
2021
).
34.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
,
054104
(
2009
).
35.
B.
Jiang
,
J.
Li
, and
H.
Guo
, “
Potential energy surfaces from high fidelity fitting of ab initio points: The permutation invariant polynomial-neural network approach
,”
Int. Rev. Phys. Chem.
35
,
479
506
(
2016
).
36.
Q.
Hong
,
L.
Storchi
,
Q.
Sun
,
M.
Bartolomei
,
F.
Pirani
, and
C.
Coletti
, “
An improved quantum-classical treatment of N2–N2 inelastic collisions: Effect of the potentials and complete rate coefficient data sets
,”
J. Chem. Theory Comput.
19
,
8557
(
2023
).
37.
S.
Falcinelli
,
D.
Cappelletti
,
F.
Vecchiocattivi
, and
F.
Pirani
, “
The role of precursor states in the stereo-dynamics of elementary processes
,”
Phys. Chem. Chem. Phys.
25
,
16176
16200
(
2023
).
38.
A.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
2013
).
39.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
WIREs Comput. Mol. Sci.
2
,
242
253
(
2012
).
40.
W.
Meerts
,
F.
De Leeuw
, and
A.
Dymanus
, “
Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy
,”
Chem. Phys.
22
,
319
324
(
1977
).
41.
G.
Billing
, “
Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions
,”
Comput. Phys. Commun.
32
,
45
62
(
1984
).
42.
Q.
Hong
,
M.
Bartolomei
,
C.
Coletti
,
A.
Lombardi
,
Q.
Sun
, and
F.
Pirani
, “
Vibrational energy transfer in CO + N2 collisions: A database for V–V and V-T/R quantum-classical rate coefficients
,”
Molecules
26
,
7152
(
2021
).
43.
Q.
Hong
,
L.
Storchi
,
M.
Bartolomei
,
F.
Pirani
,
Q.
Sun
, and
C.
Coletti
, “
Inelastic N2 + H2 collisions and quantum-classical rate coefficients: Large datasets and machine learning predictions
,”
Eur. Phys. J. D
77
,
128
(
2023
).
44.
K.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure, Vol. IV. Constants of Diatomic Molecules
,
The Theory of Rotating Diatomic Molecules
(
Springer, New York
,
1975
).
45.
R.
Hamming
,
Numerical Methods for Scientists and Engineers
(
Dover Publications
,
New York
,
1986
).
46.
G. D.
Billing
and
L.
Wang
, “
Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures
,”
J. Phys. Chem.
96
,
2572
2575
(
1992
).
47.
C. S.
Wang Chang
,
G. E.
Uhlenbeck
, and
J.
de Boer
,
Studies in Statistical Mechanics
(
North Holland Publishing co
,
1964
).
48.
E. A.
Mason
and
L.
Monchick
, “
Heat conductivity of polyatomic and polar gases
,”
J. Chem. Phys.
36
,
1622
1639
(
1962
).
49.
A.
Boushehri
,
J.
Bzowski
,
J.
Kestin
, and
E.
Mason
, “
Equilibrium and transport properties of eleven polyatomic gases at low density
,”
J. Phys. Chem. Ref. Data
16
,
445
466
(
1987
).
51.
M.
Abbaspour
and
E. K.
Goharshadi
, “
Determination of potential energy functions of CO–CO, CO2–CO2, and N2O–N2O and calculation of their transport properties
,”
Che. Phys.
330
,
313
325
(
2006
).
52.
F.
Uribe
,
E. A.
Mason
, and
J.
Kestin
, “
Thermal conductivity of nine polyatomic gases at low density
,”
J. Phys. Chem. Ref. Data
19
,
1123
1136
(
1990
).
53.
J. C.
Stephenson
and
E. R.
Mosburg
, Jr.
, “
Vibrational energy transfer in CO from 100 to 300 K
,”
J. Chem. Phys.
60
,
3562
3566
(
1974
).
54.
J. C.
Stephenson
, “
Vibrational excitation and relaxation of the CO(v = 1) and CO(v = 2) states
,”
Appl. Phys. Lett.
22
,
576
578
(
1973
).
55.
I. W.
Smith
and
C.
Wittig
, “
Vibrational energy transfer in carbon monoxide at low temperatures
,”
J. Chem. Soc., Faraday Trans. 2
69
,
939
951
(
1973
).
56.
G.
Hancock
and
I.
Smith
, “
Quenching of infrared chemiluminescence. 1: The rates of de-excitation of CO (4 ≤ v ≤ 13) by He, CO, NO, N2, O2, OCS, N2O, and CO2
,”
Appl. Opt.
10
,
1827
1842
(
1971
).
57.
H.
Powell
, “
Vibrational relaxation of carbon monoxide using a pulse discharge. II. T = 100, 300, 500 K
,”
J. Chem. Phys.
63
,
2635
2645
(
1975
).
58.
Y. S.
Liu
,
R.
McFarlane
, and
G.
Wolga
, “
Measurement of vibrational–vibrational energy transfer probabilities in CO–CO collisions by a fast flow approximation
,”
J. Chem. Phys.
63
,
228
234
(
1975
).
59.
Y.
Fushiki
and
S.
Tsuchiya
, “
Vibration-to-Vibration energy transfer of CO in the states of v = 2 ∼ 9
,”
Jpn. J. Appl. Phys.
13
,
1043
(
1974
).
60.
R. L.
DeLeon
and
J. W.
Rich
, “
Vibrational energy exchange rates in carbon monoxide
,”
Chem. Phys.
107
,
283
292
(
1986
).
61.
C. J.
Hediger
and
K. J.
Castle
, “
Vibrational self-quenching rates of CO(v = 1, 2) measured via transient diode laser absorption spectroscopy
,”
Chem. Phys. Impact
2
,
100018
(
2021
).
62.
M.
Turnidge
,
J.
Reid
,
P.
Barnes
, and
C.
Simpson
, “
Vibrational energy transfer between the isotopomers of carbon monoxide at low temperatures
,”
J. Chem. Phys.
108
,
485
491
(
1998
).
63.
M.
Kovacs
and
M.
Mack
, “
Vibrational relaxation measurements using ‘Transient’ stimulated Raman scattering
,”
Appl. Phys. Lett.
20
,
487
490
(
1972
).
64.
R. C.
Millikan
and
D. R.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
3213
(
1963
).
65.
B.
Gordiets
,
S. S.
Mamedov
, and
L.
Shelepin
, “
Vibrational kinetics of anharmonic oscillators under essentially nonequilibrium conditions
,”
Zh. Eksperimentalnoi i Teor. Fiz.
67
,
1287
1300
(
1974
).
66.
G. D.
Billing
, “
Comparison of quantum mechanical and semiclassical cross sections and rate constants for vibrational relaxation of N2 and CO colliding with 4He
,”
Chem. Phys.
107
,
39
46
(
1986
).
67.
C. E.
Rasmussen
,
C. K.
Williams
et al,
Gaussian Processes for Machine Learning
(
Springer
,
Berlin/Heidelberg, Germany
,
2006
), Vol.
1
.
68.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
69.
L.
Storchi
, “
Curvefittingml
,” (
2023
); https://github.com/lstorchi/curvefittingml/tree/COCO.
70.
P.
Brechignac
, “
Near-resonant V–V transfer rates for high-lying vibrational states of CO
,”
Chem. Phys.
34
,
119
134
(
1978
).

Supplementary Material

You do not currently have access to this content.