Building on recent simulation work, it is demonstrated using molecular dynamics simulations of two-component fluid mixtures that the chemical contribution to the Soret effect in two-component nonideal fluid mixtures arises due to differences in how the partial pressures of the components respond to temperature and density gradients. Further insight is obtained by reviewing the connection between activity and deviations from Raoult’s law in the measurement of the vapor pressure of a liquid mixture. A new parameter γsS, defined in a manner similar to the activity coefficient, is used to characterize differences deviations from “ideal” behavior. It is then shown that the difference γ2Sγ1S is predictive of the sign of the Soret coefficient and is correlated to its magnitude. We hence connect the Soret effect to the relative volatility of the components of a fluid mixture, with the more volatile component enriched in the low-density, high-temperature region, and the less volatile component enriched in the high-density, low-temperature region. Because γsS is closely connected to the activity coefficient, this suggests the possibility that measurement of partial vapor pressures might be used to indirectly determine the Soret coefficient. It is proposed that the insight obtained here is quite general and should be applicable to a wide range of materials systems. An attempt is made to understand how these results might apply to other materials systems including interstitials in solids and multicomponent solids with interdiffusion occurring via a vacancy mechanism.

1.
D.
Reith
and
F.
Müller-Plathe
, “
On the nature of thermal diffusion in binary Lennard-Jones liquids
,”
J. Chem. Phys.
112
(
5
),
2436
2443
(
2000
).
2.
C.
Debuschewitz
and
W.
Kohler
, “
Molecular origin of thermal diffusion in benzene + cyclohexane mixtures
,”
Phys. Rev. Lett.
87
(
5
),
055901
(
2001
).
3.
P.-A.
Artola
and
B.
Rousseau
, “
Microscopic interpretation of a pure chemical contribution to the Soret effect
,”
Phys. Rev. Lett.
98
(
12
),
125901
(
2007
).
4.
H.
Hoang
and
G.
Galliero
, “
Predicting thermodiffusion in simple binary fluid mixtures
,”
Eur. Phys. J. E
45
(
5
),
42
(
2022
).
5.
P. K.
Schelling
, “
Physical mechanisms of the Soret effect in binary Lennard-Jones liquids elucidated with thermal-response calculations
,”
J. Chem. Phys.
158
(
4
),
044501
(
2023
).
6.
O. R.
Gittus
and
F.
Bresme
, “
On the microscopic origin of Soret coefficient minima in liquid mixtures
,”
Phys. Chem. Chem. Phys.
25
(
3
),
1606
1611
(
2023
).
7.
G.
Galliéro
,
C.
Boned
,
A.
Baylaucq
, and
F.
Montel
, “
The van der Waals one-fluid model for viscosity in Lennard–Jones fluids: Influence of size and energy parameters
,”
Fluid Phase Equilib.
245
(
1
),
20
25
(
2006
), part of Special Issue: Proceedings of the Seventeenth European Conference on Thermophysical properties.
8.
J. K.
Johnson
and
K. E.
Gubbins
, “
Phase equilibria for associating Lennard-Jones fluids from theory and simulation
,”
Mol. Phys.
77
(
6
),
1033
1053
(
1992
).
9.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
, “
The Lennard-Jones equation of state revisited
,”
Mol. Phys.
78
(
3
),
591
618
(
1993
).
10.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
11.
F.
Montel
,
H.
Hoang
, and
G.
Galliero
, “
Linking up pressure, chemical potential and thermal gradients
,”
Eur. Phys. J. E
42
(
5
),
65
(
2019
).
12.
A. A.
Shapiro
, “
Thermodynamic theory of diffusion and thermodiffusion coefficients in multicomponent mixtures
,”
J. Non-Equilib. Thermodyn.
45
(
4
),
343
372
(
2020
).
13.
K. M.
Fernando
and
P. K.
Schelling
, “
Non-local linear-response functions for thermal transport computed with equilibrium molecular-dynamics simulation
,”
J. Appl. Phys.
128
(
21
),
215105
(
2020
).
14.
N.
Bohm
and
P. K.
Schelling
, “
Analysis of ballistic transport and resonance in the α-Fermi-Pasta-Ulam-Tsingou model
,”
Phys. Rev. E
106
,
024212
(
2022
).
15.
P.
Jund
and
R.
Jullien
, “
Molecular-dynamics calculation of the thermal conductivity of vitreous silica
,”
Phys. Rev. B
59
(
21
),
13707
13711
(
1999
).
16.
S. H.
Jamali
,
L.
Wolff
,
T. M.
Becker
,
A.
Bardow
,
T. J. H.
Vlugt
, and
O. A.
Moultos
, “
Finite-size effects of binary mutual diffusion coefficients from molecular dynamics
,”
J. Chem. Theory Comput.
14
(
5
),
2667
2677
(
2018
).
17.
W. C.
Tucker
and
P. K.
Schelling
, “
Thermodiffusion in liquid binary alloys computed from molecular-dynamics simulation and the Green-Kubo formalism
,”
Comput. Mater. Sci.
124
,
54
61
(
2016
).
18.
S.
Hartmann
,
G.
Wittko
,
W.
Köhler
,
K. I.
Morozov
,
K.
Albers
, and
G.
Sadowski
, “
Thermophobicity of liquids: Heats of transport in mixtures as pure component properties
,”
Phys. Rev. Lett.
109
(
6
),
065901
(
2012
).
19.
S.
Hartmann
,
G.
Wittko
,
F.
Schock
,
W.
Groß
,
F.
Lindner
,
W.
Köhler
, and
K. I.
Morozov
, “
Thermophobicity of liquids: Heats of transport in mixtures as pure component properties—The case of arbitrary concentration
,”
J. Chem. Phys.
141
(
13
),
134503
(
2014
).
20.
K. I.
Morozov
, “
Soret effect in molecular mixtures
,”
Phys. Rev. E
79
(
3
),
031204
(
2009
).
21.
L. J. T. M.
Kempers
, “
A thermodynamic theory of the Soret effect in a multicomponent liquid
,”
J. Chem. Phys.
90
(
11
),
6541
6548
(
1989
).
22.
K.
Shukla
and
A.
Firoozabadi
, “
A new model of thermal diffusion coefficients in binary hydrocarbon mixtures
,”
Ind. Eng. Chem. Res.
37
(
8
),
3331
3342
(
1998
).
23.
L. J. T. M.
Kempers
, “
A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid
,”
J. Chem. Phys.
115
(
14
),
6330
6341
(
2001
).
24.
J.
Farago
,
B.
Rousseau
, and
P.-A.
Artola
, “
On a variational approach to the Soret coefficient
,”
J. Chem. Phys.
125
(
16
),
164508
(
2006
).
25.
W. C.
Tucker
,
L.
Shokeen
, and
P. K.
Schelling
, “
Atomic-scale simulation of the thermodiffusion of hydrogen in palladium
,”
J. Appl. Phys.
114
(
6
),
063509
(
2013
).
26.
P. K.
Schelling
and
T.
Le
, “
Computational methodology for analysis of the Soret effect in crystals: Application to hydrogen in palladium
,”
J. Appl. Phys.
112
,
083516
(
2012
).
27.
Z.
McDargh
and
P. K.
Schelling
, “
Molecular-dynamics approach for determining the vacancy heat of transport
,”
Comput. Mater. Sci.
50
(
8
),
2363
2370
(
2011
).
28.
W. C.
Tucker
and
P. K.
Schelling
, “
Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion
,”
J. Appl. Phys.
116
(
2
),
023504
(
2014
).
29.
P. K.
Schelling
,
J.
Ernotte
,
L.
Shokeen
,
J.
Woods Halley
, and
W. C.
Tucker
, “
Molecular-dynamics calculation of the vacancy heat of transport
,”
J. Appl. Phys.
116
(
2
),
023506
(
2014
).

Supplementary Material

You do not currently have access to this content.