Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.

1.
A. C.
Dommer
et al, “
Revealing the impacts of chemical complexity on submicrometer sea spray aerosol morphology
,”
ACS Cent. Sci.
9
,
1088
(
2023
).
2.
C. C.
Wang
et al, “
Airborne transmission of respiratory viruses
,”
Science
373
,
981
(
2021
).
3.
D. J.
Tobias
et al, “
Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces
,”
Annu. Rev. Phys. Chem.
64
,
339
(
2013
).
4.
A.
Nebbioso
and
A.
Piccolo
, “
Molecular characterization of dissolved organic matter (DOM): A critical review
,”
Anal. Bioanal. Chem.
405
,
109
(
2013
).
5.
J.
Bauermann
et al, “
Chemical kinetics and mass action in coexisting phases
,”
J. Am. Chem. Soc.
144
,
19294
(
2022
).
6.
X.
Song
,
C.
Basheer
, and
R. N.
Zare
, “
Making ammonia from nitrogen and water microdroplets
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2301206120
(
2023
).
7.
Y.
Meng
,
E.
Gnanamani
, and
R. N.
Zare
, “
Catalyst-free decarboxylative amination of carboxylic acids in water microdroplets
,”
J. Am. Chem. Soc.
145
,
32
(
2023
).
8.
L.
Qiu
and
R. G.
Cooks
, “
Simultaneous and spontaneous oxidation and reduction in microdroplets by the water radical cation/anion pair
,”
Angew. Chem. Int. Ed.
61
,
e202210765
(
2022
).
9.
L.
Qiu
et al, “
Spontaneous water radical cation oxidation at double bonds in microdroplets
,”
Front. Chem.
10
,
903774
(
2022
).
10.
D. T.
Holden
,
N. M.
Morato
, and
R. G.
Cooks
, “
Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2212642119
(
2022
).
11.
Y.
Meng
,
E.
Gnanamani
, and
R. N.
Zare
, “
Direct C(sp3)-N bond formation between toluene and amine in water microdroplets
,”
J. Am. Chem. Soc.
144
,
19709
(
2022
).
12.
M.
Wang
et al, “
Abundant production of reactive water radical cations under ambient conditions
,”
CCS Chem.
4
,
1224
(
2021
).
13.
J. K.
Lee
et al, “
Condensing water vapor to droplets generates hydrogen peroxide
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
30934
(
2020
).
14.
J. K.
Lee
et al, “
Micrometer-sized water droplets induce spontaneous reduction
,”
J. Am. Chem. Soc.
141
,
10585
(
2019
).
15.
L.
Qiu
et al, “
Reaction acceleration promoted by partial solvation at the gas/solution interface
,”
ChemPlusChem
86
,
1362
(
2021
).
16.
Z.
Wei
et al, “
Accelerated reaction kinetics in microdroplets: Overview and recent developments
,”
Annu. Rev. Phys. Chem.
71
,
31
(
2020
).
17.
M.
Cortes-Clerget
et al, “
Water as the reaction medium in organic chemistry: From our worst enemy to our best friend
,”
Chem. Sci.
12
,
4237
(
2021
).
18.
M. F.
Ruiz-Lopez
et al, “
Molecular reactions at aqueous interfaces
,”
Nat. Rev. Chem.
4
,
459
(
2020
).
19.
R. N.
Butler
and
A. G.
Coyne
, “
Water: Nature’s reaction enforcer-comparative effects for organic synthesis ‘in-water’ and ‘on-water
,’”
Chem. Rev.
110
,
6302
(
2010
).
20.
C.
Macias-Romero
et al, “
Optical imaging of surface chemistry and dynamics in confinement
,”
Science
357
,
784
(
2017
).
21.
K. V.
Nelson
and
I.
Benjamin
, “
A model SN2 reaction ‘on water’ does not show rate enhancement
,”
Chem. Phys. Lett.
508
,
59
(
2011
).
22.
P. K.
Wise
and
D.
Ben-Amotz
, “
Interfacial adsorption of neutral and ionic solutes in a water droplet
,”
J. Phys. Chem. B
122
,
3447
(
2018
).
23.
P. K.
Wise
,
L. V.
Slipchenko
, and
D.
Ben-Amotz
, “
Ion-size dependent adsorption crossover on the surface of a water droplet
,”
J. Phys. Chem. B
127
,
4658
(
2023
).
24.
S.
Vepsäläinen
,
S. M.
Calderón
, and
N. L.
Prisle
, “
Comparison of six approaches to predicting droplet activation of surface active aerosol—Part 2: Strong surfactants
,”
Atmos. Chem. Phys.
23
,
15149
(
2023
).
25.
M. F.
Ruiz-Lopez
and
M. T. C.
Martins-Costa
, “
Disentangling reaction rate acceleration in microdroplets
,”
Phys. Chem. Chem. Phys.
24
,
29700
(
2022
).
26.
K. R.
Wilson
et al, “
A kinetic description of how interfaces accelerate reactions in micro-compartments
,”
Chem. Sci.
11
,
8533
(
2020
).
27.
A.
Fallah-Araghi
et al, “
Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments
,”
Phys. Rev. Lett.
112
,
028301
(
2014
).
28.
P.
Roy
,
S.
Liu
, and
C. S.
Dutcher
, “
Droplet interfacial tensions and phase transitions measured in microfluidic channels
,”
Annu. Rev. Phys. Chem.
72
,
73
(
2021
).
29.
M.
de la Puente
et al, “
Acids at the edge: Why nitric and formic acid dissociations at air-water interfaces depend on depth and on interface specific area
,”
J. Am. Chem. Soc.
144
,
10524
(
2022
).
30.
M.
Luo
et al, “
Insights into the behavior of nonanoic acid and its conjugate base at the air/water interface through a combined experimental and theoretical approach
,”
Chem. Sci.
11
,
10647
(
2020
).
31.
J.
Werner
et al, “
Shifted equilibria of organic acids and bases in the aqueous surface region
,”
Phys. Chem. Chem. Phys.
20
,
23281
(
2018
).
32.
M. T. C.
Martins-Costa
et al, “
Reactivity of atmospherically relevant small radicals at the air-water interface
,”
Angew. Chem., Int. Ed.
51
,
5413
(
2012
).
33.
B. R.
Bzdek
et al, “
The surface tension of surfactant-containing, finite volume droplets
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
8335
(
2020
).
34.
J.
Malila
and
N. L.
Prisle
, “
A monolayer partitioning scheme for droplets of surfactant solutions
,”
J. Adv. Model. Earth Syst.
10
,
3233
(
2018
).
35.
J. G.
Davis
et al, “
Water structural transformation at molecular hydrophobic interfaces
,”
Nature
491
,
582
(
2012
).
36.
D.
Ben-Amotz
, “
Electric buzz in a glass of pure water
,”
Science
376
,
800
(
2022
).
37.
H.
Hao
,
I.
Leven
, and
T.
Head-Gordon
, “
Can electric fields drive chemistry for an aqueous microdroplet?
,”
Nat. Commun.
13
,
280
(
2022
).
38.
Q.
Liang
,
C.
Zhu
, and
J.
Yang
, “
Water charge transfer accelerates Criegee intermediate reaction with H2O radical anion at the aqueous interface
,”
J. Am. Chem. Soc.
145
,
10159
(
2023
).
39.
C. M.
Roth
,
K.-U.
Goss
, and
R. P.
Schwarzenbach
, “
Adsorption of a diverse set of organic vapors on the bulk water surface
,”
J. Colloid Interface Sci.
252
,
21
(
2002
).
40.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Predicting adsorption coefficients at air–water interfaces using universal solvation and surface area models
,”
J. Phys. Chem. B
108
,
12882
(
2004
).
41.
P.
Mukerjee
and
K. J.
Mysels
, Critical Micelle Concentrations of Aqueous Surfactant Systems (
National Bureau of Standards
,
Washington, DC,
1971
), NSRDS-NBS Vol. 36.
42.
D.
Horinek
et al, “
Specific ion adsorption at the air/water interface: The role of hydrophobic solvation
,”
Chem. Phys. Lett.
479
,
173
(
2009
).
43.
S. I.
Mamatkulov
et al, “
Orientation-induced adsorption of hydrated protons at the air–water interface
,”
Angew. Chem., Int. Ed.
56
,
15846
(
2017
).
44.
C. A. J.
Daly
et al, “
Decomposition of the experimental Raman and infrared spectra of acidic water into proton, special pair, and counterion contributions
,”
J. Phys. Chem. Lett.
8
,
5246
(
2017
).
45.
D.
Ben-Amotz
and
D. R.
Herschbach
, “
Estimation of effective diameters for molecular fluids
,”
J. Phys. Chem.
94
,
1038
(
1990
).
46.
D.
Ben-Amotz
and
K. G.
Willis
, “
Molecular hard-sphere volume increments
,”
J. Phys. Chem.
97
,
7736
(
1993
).
47.
I.
Benjamin
, “
Empirical valence bond model of an SN2 reaction in polar and nonpolar solvents
,”
J. Chem. Phys.
129
,
074508
(
2008
).
48.
D.
Horinek
,
S. I.
Mamatkulov
, and
R. R.
Netz
, “
Rational design of ion force fields based on thermodynamic solvation properties
,”
J. Chem. Phys.
130
,
124507
(
2009
).
49.
X.
Chen
et al, “
Steric and solvation effects in ionic SN2 reactions
,”
J. Am. Chem. Soc.
131
,
16162
(
2009
).
50.
B. A.
Wellen
,
E. A.
Lach
, and
H. C.
Allen
, “
Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: Applications to atmospheric aerosol chemistry
,”
Phys. Chem. Chem. Phys.
19
,
26551
(
2017
).
51.
N. L.
Prisle
, “
A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning
,”
Atmos. Chem. Phys.
21
,
16387
(
2021
).

Supplementary Material

You do not currently have access to this content.