Controlling triplet states is crucial to improve the efficiency and lifetime of organic room temperature phosphorescence (ORTP). Although the intrinsic factors from intramolecular radiative and non-radiative decay have been intensively investigated, the extrinsic factors that affect triplet exciton quenching are rarely reported. Diffusion to the defect sites inside the crystal or at the crystal surface may bring about quenching of triplet exciton. Here, the phosphorescence lifetime is found to have a negative correlation with the triplet exciton diffusion coefficient based on the density functional theory (DFT)/time-dependent density functional theory (TD-DFT) calculations on a series of ORTP materials. For systems with a weak charge transfer (CT) characteristic, close π–π stacking will lead to strong triplet coupling and fast triplet exciton diffusion in most cases, which is detrimental to the phosphorescence lifetime. Notably, for intramolcular donor–acceptor (D–A) type systems with a CT characteristic, intermolecular D–A stacking results in ultra-small triplet coupling, thus contributing to slow triplet diffusion and long phosphorescence lifetime. These findings shed some light on molecular design toward high-efficiency long persistent ORTP.

1.
G.
Liu
,
S.
Zhang
,
Y.
Shi
,
X.
Huang
,
Y.
Tang
,
P.
Chen
,
W.
Si
,
W.
Huang
, and
X.
Dong
, “‘
Wax-sealed’ theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy
,”
Adv. Funct. Mater.
28
,
1804317
(
2018
).
2.
Y.
Liu
,
L.
Teng
,
Y.
Lyu
,
G.
Song
,
X. B.
Zhang
, and
W.
Tan
, “
Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging
,”
Nat. Commun.
13
,
2216
(
2022
).
3.
X.
Zhang
,
Y.
Cheng
,
J.
You
,
J.
Zhang
,
C.
Yin
, and
J.
Zhang
, “
Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance
,”
Nat. Commun.
13
,
1117
(
2022
).
4.
W.
Zhao
,
Z.
He
, and
B. Z.
Tang
, “
Room-temperature phosphorescence from organic aggregates
,”
Nat. Rev. Mater.
5
,
869
(
2020
).
5.
G.
Xie
,
J.
Wang
,
X.
Xue
,
H.
Li
,
N.
Guo
,
H.
Li
,
D.
Wang
,
M.
Li
,
W.
Huang
,
R.
Chen
, and
Y.
Tao
, “
Achieving low driving voltage and high-efficiency afterglow organic light-emitting diodes through host–guest doping
,”
Appl. Phys. Rev.
9
,
031410
(
2022
).
6.
C.
Wang
,
L.
Qu
,
X.
Chen
,
Q.
Zhou
,
Y.
Yang
,
Y.
Zheng
,
X.
Zheng
,
L.
Gao
,
J.
Hao
,
L.
Zhu
,
B.
Pi
, and
C.
Yang
, “
Poly(arylene piperidine) quaternary ammonium salts promoting stable long-lived room-temperature phosphorescence in aqueous environment
,”
Adv. Mater.
34
,
2204415
(
2022
).
7.
Y.
Zheng
,
Q.
Zhou
,
Y.
Yang
,
X.
Chen
,
C.
Wang
,
X.
Zheng
,
L.
Gao
, and
C.
Yang
, “
Full-Color long-lived room temperature phosphorescence in aqueous environment
,”
Small
18
,
2201223
(
2022
).
8.
S.
Cai
,
H.
Shi
,
J.
Li
,
L.
Gu
,
Y.
Ni
,
Z.
Cheng
,
S.
Wang
,
W. W.
Xiong
,
L.
Li
,
Z.
An
, and
W.
Huang
, “
Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions
,”
Adv. Mater.
29
,
1701244
(
2017
).
9.
L.
Gu
,
H.
Shi
,
M.
Gu
,
K.
Ling
,
H.
Ma
,
S.
Cai
,
L.
Song
,
C.
Ma
,
H.
Li
,
G.
Xing
,
X.
Hang
,
J.
Li
,
Y.
Gao
,
W.
Yao
,
Z.
Shuai
,
Z.
An
,
X.
Liu
, and
W.
Huang
, “
Dynamic ultralong organic phosphorescence by photoactivation
,”
Angew. Chem., Int. Ed.
57
,
8425
8431
(
2018
).
10.
Z.
He
,
H.
Gao
,
S.
Zhang
,
S.
Zheng
,
Y.
Wang
,
Z.
Zhao
,
D.
Ding
,
B.
Yang
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications
,”
Adv. Mater.
31
,
1807222
(
2019
).
11.
W.
Qin
,
J.
Ma
,
Y.
Zhou
,
Q.
Hu
,
Y.
Zhou
, and
G.
Liang
, “
Simultaneous promotion of efficiency and lifetime of organic phosphorescence for self-referenced temperature sensing
,”
Chem. Eng. J.
400
,
125934
(
2020
).
12.
Z.
Yin
,
M.
Gu
,
H.
Ma
,
X.
Jiang
,
J.
Zhi
,
Y.
Wang
,
H.
Yang
,
W.
Zhu
, and
Z.
An
, “
Molecular engineering through control of structural deformation for highly efficient ultralong organic phosphorescence
,”
Angew. Chem., Int. Ed.
60
,
2058
2063
(
2021
).
13.
H.
Gao
,
Z.
Gao
,
D.
Jiao
,
J.
Zhang
,
X.
Li
,
Q.
Tang
,
Y.
Shi
, and
D.
Ding
, “
Boosting room temperature phosphorescence performance by alkyl modification for intravital orthotopic lung tumor imaging
,”
Small
17
,
2005449
(
2021
).
14.
Q.
Liao
,
Q.
Gao
,
J.
Wang
,
Y.
Gong
,
Q.
Peng
,
Y.
Tian
,
Y.
Fan
,
H.
Guo
,
D.
Ding
,
Q.
Li
, and
Z.
Li
, “
9,9-Dimethylxanthene derivatives with room-temperature phosphorescence: Substituent effects and emissive properties
,”
Angew. Chem., Int. Ed.
59
,
9946
(
2020
).
15.
A.
Huang
,
Y.
Fan
,
K.
Wang
,
Z.
Wang
,
X.
Wang
,
K.
Chang
,
Y.
Gao
,
M.
Chen
,
Q.
Li
, and
Z.
Li
, “
Organic persistent RTP crystals: From brittle to flexible by tunable self-partitioned molecular packing
,”
Adv. Mater.
35
,
2209166
(
2023
).
16.
Z.
Cong
,
M.
Han
,
Y.
Fan
,
Y.
Fan
,
K.
Chang
,
L.
Xiao
,
Y.
Zhang
,
X.
Zhen
,
Q.
Li
, and
Z.
Li
, “
Ultralong blue room-temperature phosphorescence by cycloalkyl engineering
,”
Mater. Chem. Front.
6
,
1606
(
2022
).
17.
S.
Jena
,
A. T. M.
Munthasir
, and
P.
Thilagar
, “
Ultralong room temperature phosphorescence and ultraviolet fluorescence from simple triarylphosphine oxides
,”
J. Mater. Chem. C
10
,
9124
(
2022
).
18.
H.
Mao
,
J.
Gao
,
W.
Zhao
,
T.
Wang
,
G.-G.
Shan
,
Y.
Geng
,
K.
Shao
,
X.
Wang
, and
Z.
Su
, “
Boosting ultralong organic phosphorescence performance by synergistic heavy-atom effect and multiple intermolecular interactions in molecular crystal
,”
J. Mater. Chem. C
10
,
6334
(
2022
).
19.
V. S.
Reddy
and
S.
Irle
, “
Indirect intersystem crossing (S1 → T3/T2 → T1) promoted by the Jahn–Teller effect in cycloparaphenylenes
,”
J. Chem. Theory Comput.
13
,
4944
(
2017
).
20.
Z.
An
,
C.
Zheng
,
Y.
Tao
,
R.
Chen
,
H.
Shi
,
T.
Chen
,
Z.
Wang
,
H.
Li
,
R.
Deng
,
X.
Liu
, and
W.
Huang
, “
Stabilizing triplet excited states for ultralong organic phosphorescence
,”
Nat. Mater.
14
,
685
(
2015
).
21.
C.
Chen
,
Z.
Chi
,
K. C.
Chong
,
A. S.
Batsanov
,
Z.
Yang
,
Z.
Mao
,
Z.
Yang
, and
B.
Liu
, “
Carbazole isomers induce ultralong organic phosphorescence
,”
Nat. Mater.
20
,
175
(
2021
).
22.
K. C.
Chong
,
C.
Chen
,
C.
Zhou
,
X.
Chen
,
D.
Ma
,
G. C.
Bazan
,
Z.
Chi
, and
B.
Liu
, “
Structurally resemblant dopants enhance organic room-temperature phosphorescence
,”
Adv. Mater.
34
,
e2201569
(
2022
).
23.
Q.
Sun
,
J.
Ren
,
Q.
Peng
, and
Z.
Shuai
, “
Heterofission mechanism for pure organic room temperature phosphorescence
,”
Adv. Opt. Mater.
12
,
2301769
(
2023
).
24.
W. Z.
Yuan
,
X. Y.
Shen
,
H.
Zhao
,
J. W. Y.
Lam
,
L.
Tang
,
P.
Lu
,
C.
Wang
,
Y.
Liu
,
Z.
Wang
,
Q.
Zheng
,
J. Z.
Sun
,
Y.
Ma
, and
B. Z.
Tang
, “
Crystallization-induced phosphorescence of pure organic luminogens at room temperature
,”
J. Phys. Chem. C
114
,
6090
(
2010
).
25.
R.
Kabe
and
C.
Adachi
, “
Organic long persistent luminescence
,”
Nature
550
,
384
(
2017
).
26.
F.
Xiao
,
H.
Gao
,
Y.
Lei
,
W.
Dai
,
M.
Liu
,
X.
Zheng
,
Z.
Cai
,
X.
Huang
,
H.
Wu
, and
D.
Ding
, “
Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging
,”
Nat. Commun.
13
,
186
(
2022
).
27.
D.
Li
,
Y.
Yang
,
J.
Yang
,
M.
Fang
,
B. Z.
Tang
, and
Z.
Li
, “
Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color
,”
Nat. Commun.
13
,
347
(
2022
).
28.
W.
Liu
,
J.
Wang
,
Y.
Gong
,
Q.
Liao
,
Q.
Dang
,
Z.
Li
, and
Z.
Bo
, “
Room-temperature phosphorescence invoked through norbornyl-driven intermolecular interaction intensification with anomalous reversible solid-state photochromism
,”
Angew. Chem., Int. Ed.
59
,
20161
20166
(
2020
).
29.
F.
Xiao
,
M.
Wang
,
Y.
Lei
,
W.
Dai
,
Y.
Zhou
,
M.
Liu
,
W.
Gao
,
X.
Huang
, and
H.
Wu
, “
Achieving crystal-induced room temperature phosphorescence and reversible photochromic properties by strong intermolecular interactions
,”
J. Mater. Chem. C
8
,
17410
(
2020
).
30.
W.-J.
Guo
,
Y.-Z.
Chen
,
C.-H.
Tung
, and
L.-Z.
Wu
, “
Ultralong room-temperature phosphorescence of silicon-based pure organic crystal for oxygen sensing
,”
CCS Chem.
4
,
1007
1015
(
2022
).
31.
N.
Xie
,
J.
Wang
,
T.
Huang
,
L.
Zhao
,
P.
Sun
,
G.
Lu
,
Y.
Wang
, and
C.
Li
, “
A benzene ring-linked dimethylamino and borate ester-based molecule and organic crystal: Efficient dual room-temperature phosphorescence with responsive property
,”
Adv. Opt. Mater.
10
,
202200767
(
2022
).
32.
S.
Hirata
, “
Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons
,”
Appl. Phys. Rev.
9
,
011304
(
2022
).
33.
K.
Narushima
,
Y.
Kiyota
,
T.
Mori
,
S.
Hirata
, and
M.
Vacha
, “
Suppressed triplet exciton diffusion due to small orbital overlap as a key design factor for ultralong-lived room-temperature phosphorescence in molecular crystals
,”
Adv. Mater.
31
,
1807268
(
2019
).
34.
S.
Cai
,
H.
Shi
,
Z.
Zhang
,
X.
Wang
,
H.
Ma
,
N.
Gan
,
Q.
Wu
,
Z.
Cheng
,
K.
Ling
,
M.
Gu
,
C.
Ma
,
L.
Gu
,
Z.
An
, and
W.
Huang
, “
Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π–π interactions
,”
Angew. Chem., Int. Ed.
57
,
4005
4009
(
2018
).
35.
Y.
Zhou
,
W.
Qin
,
C.
Du
,
H.
Gao
,
F.
Zhu
, and
G.
Liang
, “
Long-lived room-temperature phosphorescence for visual and quantitative detection of oxygen
,”
Angew. Chem., Int. Ed.
58
,
12102
12106
(
2019
).
36.
D. L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
,
836
850
(
1953
).
37.
Y.
Wen
,
H.
Liu
,
S.
Zhang
,
J.
Cao
,
J.
De
, and
B.
Yang
, “
Achieving highly efficient pure organic single-molecule white-light emitter: The coenhanced fluorescence and phosphorescence dual emission by tailoring alkoxy substituents
,”
Adv. Opt. Mater.
8
,
1901995
(
2020
).
38.
J.
Jin
,
H.
Jiang
,
Q.
Yang
,
L.
Tang
,
Y.
Tao
,
Y.
Li
,
R.
Chen
,
C.
Zheng
,
Q.
Fan
,
K. Y.
Zhang
,
Q.
Zhao
, and
W.
Huang
, “
Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow
,”
Nat. Commun.
11
,
842
(
2020
).
39.
Y.
Xie
,
Y.
Ge
,
Q.
Peng
,
C.
Li
,
Q.
Li
, and
Z.
Li
, “
How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations
,”
Adv. Mater.
29
,
1606829
(
2017
).
40.
Y.
Liu
,
Z.
Ma
,
J.
Liu
,
M.
Chen
,
Z.
Ma
, and
X.
Jia
, “
Robust white-light emitting and multi-responsive luminescence of a dual-mode phosphorescence molecule
,”
Adv. Opt. Mater.
9
,
2001685
(
2020
).
41.
B.
Fang
,
L.
Lai
,
M.
Fan
, and
M.
Yin
, “
Designing organic room temperature phosphorescence with ultralong lifetime by substituent modification
,”
J. Mater. Chem. C
9
,
11172
(
2021
).
42.
L.
Wang
,
G.
Nan
,
X.
Yang
,
Q.
Peng
,
Q.
Li
, and
Z.
Shuai
, “
Computational methods for design of organic materials with high charge mobility
,”
Chem. Soc. Rev.
39
,
423
(
2010
).
43.
Y.-b.
Si
,
X.-x.
Zhong
,
W.-w.
Zhang
, and
Y.
Zhao
, “
Theoretical investigation on triplet excitation energy transfer in fluorene dimer
,”
Chin. J. Chem. Phys.
24
,
538
546
(
2011
).
44.
A. A.
Voityuk
, “
Triplet excitation energy transfer through fluorene π stack
,”
J. Phys. Chem. C
114
,
20236
20239
(
2010
).
45.
R. J.
Hudson
,
D. M.
Huang
, and
T. W.
Kee
, “
Anisotropic triplet exciton diffusion in crystalline functionalized pentacene
,”
J. Phys. Chem. C
124
,
23541
23550
(
2020
).
46.
C.-P.
Hsu
,
Z.-Q.
You
, and
H.-C.
Chen
, “
Characterization of the short-range couplings in excitation energy transfer
,”
J. Phys. Chem. C
112
,
1204
1212
(
2008
).
47.
Z. Q.
You
and
C. P.
Hsu
, “
The fragment spin difference scheme for triplet-triplet energy transfer coupling
,”
J. Chem. Phys.
133
,
074105
(
2010
).
48.
Z. Q.
You
,
C. P.
Hsu
, and
G. R.
Fleming
, “
Triplet-triplet energy-transfer coupling: Theory and calculation
,”
J. Chem. Phys.
124
,
044506
(
2006
).
49.
S.
Yeganeh
and
T. V.
Voorhis
, “
Triplet excitation energy transfer with constrained density functional theory
,”
J. Phys. Chem. C
114
,
20756
20763
(
2010
).
50.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
51.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
(
1990
).
52.
Y.
Niu
,
W.
Li
,
Q.
Peng
,
H.
Geng
,
Y.
Yi
,
L.
Wang
,
G.
Nan
,
D.
Wang
, and
Z.
Shuai
, “
MOlecular MAterials Property prediction package (MOMAP) 1.0: A software package for predicting the luminescent properties and mobility of organic functional materials
,”
Mol. Phys.
116
,
1078
(
2018
).
53.
S.-H.
Wen
,
A.
Li
,
J.
Song
,
W.-Q.
Deng
,
K.-L.
Han
, and
W. A.
Goddard
III
, “
First-principles investigation of anistropic hole mobilities in organic semiconductors
,”
J. Phys. Chem. B
113
,
8813
8819
(
2009
).
54.
J.
Huang
and
M.
Kertesz
, “
Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials
,”
J. Chem. Phys.
122
,
234707
(
2005
).
55.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2014
).
56.
S.
Liu
,
Y.
Gao
,
K.
Zhang
,
S.
Liu
,
H.
Lan
,
L.
Lin
,
C.-K.
Wang
,
J.
Fan
, and
Y.
Song
, “
The mechanism of intramolecular halogen bonding enhanced the quantum efficiency of ultralong organic phosphorescence in the aggregated state
,”
Phys. Chem. Chem. Phys.
24
,
22905
22917
(
2022
).
57.
A.
Zhao
,
X.
Wu
,
X.
Jiang
,
J.
Gao
,
J.
Wang
, and
W.
Shen
, “
Unveiling the mechanisms of organic room-temperature phosphorescence in various surrounding environments: A computational study
,”
Phys. Chem. Chem. Phys.
23
,
26813
26821
(
2021
).
58.
K.
Qin
,
W.
Gong
,
J.
Gao
,
D.
Hu
,
H.
Shi
,
W.
Yao
,
Z.
An
, and
H.
Ma
, “
Theoretical insight into the ultralong room-temperature phosphorescence of nonplanar aromatic hydrocarbon
,”
Front. Chem.
9
,
740018
(
2021
).
59.
H.
Guo
,
X.
Ma
,
Z.
Lei
,
Y.
Qiu
,
J.
Zhao
, and
B.
Dick
, “
Photophysical properties of N-methyl and N-acetyl substituted alloxazines: A theoretical investigation
,”
Phys. Chem. Chem. Phys.
23
,
13734
13744
(
2021
).
60.
Z.
Yin
,
Q.
Sun
,
L.
Chen
,
M.
Du
,
Y.-Y.
Huang
,
Q.
Peng
,
G.
Zhang
, and
D.
Zhang
, “
New phthalic anhydride-based room-temperature phosphorescence emitter with lifetime longer than one second
,”
Adv. Opt. Mater.
11
,
2202224
(
2023
).
61.
M.
Du
,
Y.
Shi
,
Q.
Zhou
,
Z.
Yin
,
L.
Chen
,
Y.
Shu
,
G.-Y.
Sun
,
G.
Zhang
,
Q.
Peng
, and
D.
Zhang
, “
White emissions containing room temperature phosphorescence from different excited states of a D–π–A molecule depending on the aggregate states
,”
Adv. Sci.
9
,
2104539
(
2022
).
62.
Z.
Liu
,
T.
Lu
, and
Q.
Chen
, “
An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity
,”
Carbon
165
,
461
(
2020
).
63.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
(
2012
).
64.
J.
Wang
, “
High efficient room temperature phosphorescent materials constructed with methylene molecular configuration
,”
Front. Chem.
10
,
1010676
(
2022
).
65.
N.
Liang
,
G.
Liu
,
D.
Hu
,
K.
Wang
,
Y.
Li
,
T.
Zhai
,
X.
Zhang
,
Z.
Shuai
,
H.
Yan
,
J.
Hou
, and
Z.
Wang
, “
Heavy-atom-free room-temperature phosphorescent rylene imide for high-performing organic photovoltaics
,”
Adv. Sci.
9
,
2103975
(
2022
).
66.
W.
Gong
,
K.
Qin
,
X.
Yao
,
Q.
Li
,
A.
Lv
,
W.
Ye
,
H.
Shi
,
Z.
An
, and
H.
Ma
, “
A π-orbital model to study substituent effects in organic room-temperature phosphorescent materials
,”
J. Mater. Chem. C
10
,
9319
(
2022
).
67.
I.
Bhattacharjee
and
S.
Hirata
, “
Highly efficient persistent room-temperature phosphorescence from heavy atom-free molecules triggered by hidden long phosphorescent antenna
,”
Adv. Mater.
32
,
2001348
(
2020
).
68.
S.
Hirata
, “
Roles of localized electronic structures caused by π degeneracy due to highly symmetric heavy atom-free conjugated molecular crystals leading to efficient persistent room-temperature phosphorescence
,”
Adv. Sci.
6
,
1900410
(
2019
).
69.
Y.
Si
,
W.
Liang
, and
Y.
Zhao
, “
Theoretical prediction of triplet–triplet energy transfer rates in a benzophenone–fluorene–naphthalene system
,”
J. Phys. Chem. C
116
,
12499
12507
(
2012
).
70.
Y.
Kong
,
Y.-C.
Wang
,
X.
Huang
,
W.
Liang
, and
Y.
Zhao
, “
Switching on/off phosphorescent or non-radiative channels by aggregation-induced quantum interference
,”
Aggregate
4
,
e395
(
2023
).
71.
T.
Lu
and
Q.
Chen
, “
Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
,”
J. Comput. Chem.
43
,
539
(
2022
).

Supplementary Material

You do not currently have access to this content.