Molecular dynamics simulations are conducted to systematically investigate the insertion of spherical nanoparticles (NPs) in polymer brushes as a function of their size, strength of their interaction with the polymers, polymer grafting density, and polymer chain length. For attractive interactions between the NPs and the polymers, the depth of NPs’ penetration in the brush results from a competition between the enthalpic gain due to the favorable polymer–NP interaction and the effect of osmotic pressure resulting from displaced polymers by the NP’s volume. A large number of simulations show that the average depth of the NPs increases by increasing the strength of the interaction strength. However, it decreases by increasing the NPs’ diameter or increasing the polymer grafting density. While the NPs’ effect on the polymer density is local, their effect on their conformations is long-ranged and extends laterally over length scales larger than the NP’s size. This effect is manifested by the emergence of laterally damped oscillations in the normal component of the chains’ radius of gyration. Interestingly, we found that for high enough interaction strength, two NPs dimerize in the polymer brush. The dimer is parallel to the substrate if the NPs’ depth in the brush is shallow. However, the dimer is perpendicular to the substrate if the NPs’ are deep in the brush. These results imply that polymer brushes can be used as a tool to localize and self-assemble NPs in polymer brushes.

1.
M.
Wang
,
A. M.
Mihut
,
E.
Rieloff
,
A. P.
Dabkowska
,
L. K.
Månsson
,
J. N.
Immink
,
E.
Sparr
, and
J. J.
Crassous
,
Proc. Natl. Acad. Sci. U. S. A
116
,
5442
(
2019
).
2.
3.
J.-M.
Lamarre
,
F.
Billard
,
C. H.
Kerboua
,
M.
Lequime
,
S.
Roorda
, and
L.
Martinu
,
Opt. Commun.
281
,
331
(
2008
).
4.
C.
Yu
,
X.
Guo
,
M.
Shen
,
B.
Shen
,
M.
Muzzio
,
Z.
Yin
,
Q.
Li
,
Z.
Xi
,
J.
Li
,
C. T.
Seto
, and
S.
Sun
,
Angew. Chem., Int. Ed.
57
,
451
(
2018
).
5.
S.
Sun
,
S.
Anders
,
H. F.
Hamann
,
J.-U.
Thiele
,
J. E. E.
Baglin
,
T.
Thomson
,
E. E.
Fullerton
,
C. B.
Murray
, and
B. D.
Terris
,
J. Am. Chem. Soc.
124
,
2884
(
2002
).
6.
I.
Tokarev
and
S.
Minko
,
Soft Matter
5
,
511
(
2009
).
7.
D.
Gao
,
D.
Hu
,
X.
Liu
,
X.
Zhang
,
Z.
Yuan
,
Z.
Sheng
, and
H.
Zheng
,
ACS Appl. Polym. Mater.
2
,
4241
(
2020
).
8.
I.
de Lázaro
and
D. J.
Mooney
,
Nat. Mater.
20
,
1469
(
2021
).
9.
X.
Wu
,
C.
Hao
,
J.
Kumar
,
H.
Kuang
,
N. A.
Kotov
,
L. M.
Liz-Marzán
, and
C.
Xu
,
Chem. Soc. Rev.
47
,
4677
(
2018
).
10.
R. J.
Peters
,
H.
Bouwmeester
,
S.
Gottardo
,
V.
Amenta
,
M.
Arena
,
P.
Brandhoff
,
H. J.
Marvin
,
A.
Mech
,
F. B.
Moniz
,
L. Q.
Pesudo
,
H.
Rauscher
,
R.
Schoonjans
,
A. K.
Undas
,
M. V.
Vettori
,
S.
Weigel
, and
K.
Aschberger
,
Trends Food Sci. Technol.
54
,
155
(
2016
).
11.
S.
Reitsma
,
D. W.
Slaaf
,
H.
Vink
,
M. A. M. J.
van Zandvoort
, and
M. G. A.
oude Egbrink
,
Pflug. Arch. - Eur. J. Physiol.
454
,
345
(
2007
).
12.
J.
Liao
,
D. W.
Smith
,
S.
Miramini
,
B. S.
Gardiner
, and
L.
Zhang
,
Friction
10
,
110
(
2022
).
13.
N. M.
La-Beck
,
X.
Liu
, and
L. M.
Wood
,
Front. Pharmacol.
10
,
220
(
2019
).
14.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
,
Macromolecules
21
,
2610
(
1988
).
15.
C. M.
Wijmans
,
J. M. H. M.
Scheutjens
, and
E. B.
Zhulina
,
Macromolecules
25
,
2657
(
1992
).
16.
K. G.
Soga
,
H.
Guo
, and
M. J.
Zuckermann
,
Europhys. Lett.
29
,
531
(
1995
).
17.
G. S.
Grest
and
M.
Murat
,
Macromolecules
26
,
3108
(
1993
).
18.
M.
Laradji
,
H.
Guo
, and
M. J.
Zuckermann
,
Phys. Rev. E
49
,
3199
(
1994
).
19.
M.
Divandari
,
G.
Morgese
,
L.
Trachsel
,
M.
Romio
,
E. S.
Dehghani
,
J.-G.
Rosenboom
,
C.
Paradisi
,
M.
Zenobi-Wong
,
S. N.
Ramakrishna
, and
E. M.
Benetti
,
Macromolecules
50
,
7760
(
2017
).
20.
I.
Szleifer
,
D.
Kramer
,
A.
Ben-Shaul
,
D.
Roux
, and
W. M.
Gelbart
,
Phys. Rev. Lett.
60
,
1966
(
1988
).
21.
C. M.
Wijmans
and
E. B.
Zhulina
,
Macromolecules
26
,
7214
(
1993
).
22.
23.
H.
Jia
,
A.
Wildes
, and
S.
Titmuss
,
Macromolecules
45
,
305
(
2012
).
24.
S.
Balamurugan
,
S.
Mendez
,
S. S.
Balamurugan
,
M. J. I.
O’Brien
, and
G. P.
López
,
Langmuir
19
,
2545
(
2003
).
25.
M. P.
Weir
,
S. Y.
Heriot
,
S. J.
Martin
,
A. J.
Parnell
,
S. A.
Holt
,
J. R. P.
Webster
, and
R. A. L.
Jones
,
Langmuir
27
,
11000
(
2011
).
26.
J.
Huang
,
Y.
Wang
, and
M.
Laradji
,
Macromolecules
39
,
5546
(
2006
).
27.
J.
Midya
,
M.
Rubinstein
,
S. K.
Kumar
, and
A.
Nikoubashman
,
ACS Nano
14
,
15505
(
2020
).
28.
N. K.
Hansoge
,
A.
Gupta
,
H.
White
,
A.
Giuntoli
, and
S.
Keten
,
Macromolecules
54
,
3052
(
2021
).
29.
Z.
Wu
,
S.
Pal
, and
S.
Keten
,
Macromolecules
56
,
3259
(
2023
).
30.
S.
Christau
,
T.
Möller
,
Z.
Yenice
,
J.
Genzer
, and
R.
von Klitzing
,
Langmuir
30
,
13033
(
2014
).
31.
Z.
Liu
,
K.
Pappacena
,
J.
Cerise
,
J.
Kim
,
C. J.
Durning
,
B.
O’Shaughness
, and
R.
Levicky
,
Nano Lett.
2
,
219
(
2002
).
32.
S.
Nakamura
,
H.
Mitomo
, and
K.
Ijiro
,
Chem. Lett.
50
,
361
(
2021
).
33.
B. J.
Lindsay
,
R. J.
Composto
, and
R. A.
Riggleman
,
J. Phys. Chem. B
123
,
9466
(
2019
).
34.
N. M.
Krook
,
C.
Tabedzki
,
K. C.
Elbert
,
K. G.
Yager
,
C. B.
Murray
,
R. A.
Riggleman
, and
R. J.
Composto
,
Macromolecules
52
,
8989
(
2019
).
35.
B.
Steels
,
J.
Koska
, and
C.
Haynes
,
J. Chromatogr. B: Biomed. Sci. Appl.
743
,
41
(
2000
).
36.
J. U.
Kim
and
B.
O’Shaughnessy
,
Phys. Rev. Lett.
89
,
238301
(
2002
).
37.
J. U.
Kim
and
B.
O’Shaughnessy
,
Macromolecules
39
,
413
(
2006
).
38.
K.
Chen
and
Y.-Q.
Ma
,
J. Phys. Chem. B
109
,
17617
(
2005
).
39.
J. U.
Kim
and
M. W.
Matsen
,
Macromolecules
41
,
246
(
2008
).
40.
W. M.
de Vos
,
F. A. M.
Leermakers
,
A.
de Keizer
,
J. M.
Kleijn
, and
M. A.
Cohen Stuart
,
Macromolecules
42
,
5881
(
2009
).
41.
A.
Halperin
,
M.
Kröger
, and
E. B.
Zhulina
,
Macromolecules
44
,
3622
(
2011
).
42.
S. A.
Egorov
,
J. Chem. Phys.
137
,
134905
(
2012
).
43.
G.
Subramanian
,
D. R. M.
Williams
, and
P. A.
Pincus
,
Macromolecules
29
,
4045
(
1996
).
44.
45.
X.
Xu
and
D.
Cao
,
J. Chem. Phys.
130
,
164901
(
2009
).
46.
A.
Milchev
,
D.
Dimitrov
, and
K.
Binder
,
Polymer
49
,
3611
(
2008
).
47.
V.
Ermilov
,
A.
Lazutin
, and
A.
Halperin
,
Macromolecules
43
,
3511
(
2010
).
48.
Y.
Chen
and
J. Z. Y.
Chen
,
J. Polym. Sci., Part B: Polym. Phys.
50
,
21
(
2012
).
49.
J.
Cheng
,
A.
Vishnyakov
, and
A. V.
Neimark
,
J. Chem. Phys.
142
,
034705
(
2015
).
50.
J.
Yaneva
,
D.
Dimitrov
,
A.
Milchev
, and
K.
Binder
,
J. Colloid Interface Sci.
336
,
51
(
2009
).
51.
H.
Merlitz
,
C.-X.
Wu
, and
J.-U.
Sommer
,
Macromolecules
45
,
8494
(
2012
).
52.
T.
Curk
,
F. J.
Martinez-Veracoechea
,
D.
Frenkel
, and
J.
Dobnikar
,
Nano Lett.
14
,
2617
(
2014
).
53.
C.
Yigit
,
M.
Kanduč
,
M.
Ballauff
, and
J.
Dzubiella
,
Langmuir
33
,
417
(
2017
).
54.
S.
de Beer
,
L. I. S.
Mensink
, and
B. D.
Kieviet
,
Macromolecules
49
,
1070
(
2016
).
55.
Y.
Hua
,
D.
Zhang
, and
L.
Zhang
,
Polymer
83
,
67
(
2016
).
56.
H.
Lee
and
R. G.
Larson
,
Biomacromolecules
17
,
1757
(
2016
).
57.
F.
Léonforte
and
M.
Müller
,
Macromolecules
49
,
5256
(
2016
).
58.
S.
Cheng
,
M. J.
Stevens
, and
G.
Grest
,
J. Chem. Phys.
147
,
224901
(
2017
).
59.
C.
Gu
,
R. D.
Coalson
,
D.
Jasnow
, and
A.
Zilman
,
J. Phys. Chem. B
121
,
6425
(
2017
).
60.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
61.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
62.
E. J.
Spangler
,
P. B. S.
Kumar
, and
M.
Laradji
,
Soft Matter
14
,
5019
(
2018
).
63.
E. J.
Spangler
and
M.
Laradji
,
J. Chem. Phys.
154
,
244902
(
2021
).
64.
R.
Everaers
,
H. A.
Karimi-Varzaneh
,
F.
Fleck
,
N.
Hojdis
, and
C.
Svaneborg
,
Macromolecules
53
,
1901
(
2020
).
65.
J. C.
Conrad
and
M. L.
Robertson
,
JACS Au
3
,
333
(
2023
).
66.
D.
Kesal
,
S.
Christau
,
P.
Krause
,
T.
Möller
, and
R.
Von Klitzing
,
Polymers
8
,
134
(
2016
).
67.
H.
Kobayashi
and
R. G.
Winkler
,
Polymers
6
,
1602
(
2014
).
68.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
Heidelberg
,
2011
).
69.
S.
Christau
,
T.
Moeller
,
J.
Genzer
,
R.
Koehler
, and
R.
von Klitzing
,
Macromolecules
50
,
7333
(
2017
).
70.
B.
Rasin
,
B. J.
Lindsay
,
X.
Ye
,
J. S.
Meth
,
C. B.
Murray
,
R. A.
Riggleman
, and
R. J.
Composto
,
Soft Matter
16
,
3005
(
2020
).
71.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).

Supplementary Material

You do not currently have access to this content.