We present a theoretical model to study the effect of counterion size on the effective charge, size, and thermodynamic behavior of a single, isolated, and flexible polyelectrolyte (PE) chain. We analyze how altering counterion size modifies the energy and entropy contributions to the system, including the ion-pair free energy, excluded volume interactions, entropy of free and condensed ions, and dipolar attraction among monomer–counterion pairs, which result in competing effects challenging intuitive predictions. The PE self-energy is calculated using the Edwards–Muthukumar Hamiltonian, considering a Gaussian monomer distribution for the PE. The condensed ions are assumed to be confined within a cylindrical volume around the PE backbone. The dipolar and excluded volume interactions are described by the second and third virial coefficients. The assumption of freely rotating dipoles results in a first-order coil–globule transition of the PE chain. A more realistic, weaker dipolar attraction, parameterized in our theory, shifts it to a second-order continuous transition. We calculate the size scaling-exponent of the PE and find exponents according to the relative dominance of the electrostatic, excluded volume, or dipolar effects. We further identify the entropy- and energy-driven regimes of the effective charge and conformation of the PE, highlighting the interplay of free ion entropy and ion-pair energy with varying electrostatic strengths. The crossover strength, dependent on the counterion size, indicates that diminishing sizes favor counterion condensation at the expense of free ion entropy. The predictions of the model are consistent with trends in simulations and generalize the findings of the point-like counterion theories.

1.
F.
Oosawa
,
Polyelectrolytes
(
Marcel Dekker
,
New York
,
1970
).
2.
A.
Khokhlov
and
K.
Khachaturian
, “
On the theory of weakly charged polyelectrolytes
,”
Polymer
23
,
1742
1750
(
1982
).
3.
N. V.
Brilliantov
,
D. V.
Kuznetsov
, and
R.
Klein
, “
Chain collapse and counterion condensation in dilute polyelectrolyte solutions
,”
Phys. Rev. Lett.
81
,
1433
1436
(
1998
).
4.
F. J.
Solis
and
M. O.
de la Cruz
, “
Collapse of flexible polyelectrolytes in multivalent salt solutions
,”
J. Chem. Phys.
112
,
2030
2035
(
2000
).
5.
M.
Muthukumar
, “
Theory of counter-ion condensation on flexible polyelectrolytes: Adsorption mechanism
,”
J. Chem. Phys.
120
,
9343
9350
(
2004
).
6.
A.
Dobrynin
and
M.
Rubinstein
, “
Theory of polyelectrolytes in solutions and at surfaces
,”
Prog. Polym. Sci.
30
,
1049
1118
(
2005
).
7.
A.
Dua
and
T. A.
Vilgis
, “
Self-consistent variational theory for globules
,”
Europhys. Lett.
71
,
49
55
(
2005
).
8.
A.
Kundagrami
and
M.
Muthukumar
, “
Theory of competitive counterion adsorption on flexible polyelectrolytes: Divalent salts
,”
J. Chem. Phys.
128
,
244901
(
2008
).
9.
A.
Kundagrami
and
M.
Muthukumar
, “
Effective charge and Coil−Globule transition of a polyelectrolyte chain
,”
Macromolecules
43
,
2574
2581
(
2010
).
10.
P.
Chi
,
Z.
Wang
,
Y.
Yin
,
B.
Li
, and
A.-C.
Shi
, “
Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent
,”
Phys. Rev. E
87
,
042608
(
2013
).
11.
P.
Kundu
and
A.
Dua
, “
Weak polyelectrolytes in the presence of counterion condensation with ions of variable size and polarizability
,”
J. Stat. Mech.: Theory Exp.
2014
,
P07023
.
12.
A. M.
Tom
,
S.
Vemparala
,
R.
Rajesh
, and
N. V.
Brilliantov
, “
Mechanism of chain collapse of strongly charged polyelectrolytes
,”
Phys. Rev. Lett.
117
,
147801
(
2016
).
13.
M.
Muthukumar
, “
50th Anniversary perspective: A perspective on polyelectrolyte solutions
,”
Macromolecules
50
,
9528
9560
(
2017
).
14.
A. M.
Tom
,
S.
Vemparala
,
R.
Rajesh
, and
N. V.
Brilliantov
, “
Regimes of electrostatic collapse of a highly charged polyelectrolyte in a poor solvent
,”
Soft Matter
13
,
1862
1872
(
2017
).
15.
S.
Mitra
and
A.
Kundagrami
, “
Kinetics of swelling and collapse of a single polyelectrolyte chain
,”
Macromolecules
50
,
2504
2517
(
2017
).
16.
M.
Muthukumar
,
Physics of Charged Macromolecules
(
Cambridge University Press
,
2023
).
17.
A. A.
Gavrilov
,
A. V.
Chertovich
, and
E. Y.
Kramarenko
, “
Conformational behavior of a single polyelectrolyte chain with bulky counterions
,”
Macromolecules
49
,
1103
1110
(
2016
).
18.
Y. D.
Gordievskaya
,
A. A.
Gavrilov
, and
E. Y.
Kramarenko
, “
Effect of counterion excluded volume on the conformational behavior of polyelectrolyte chains
,”
Soft Matter
14
,
1474
1481
(
2018
).
19.
C.
von Ferber
and
H.
Löwen
, “
Complexes of polyelectrolytes and oppositely charged ionic surfactants
,”
J. Chem. Phys.
118
,
10774
10779
(
2003
).
20.
N. T. M.
Klooster
,
F.
Van der Touw
, and
M.
Mandel
, “
Solvent effects in polyelectrolyte solutions. 1. Potentiometric and viscosimetric titration of poly(acrylic acid) in methanol and counterion specificity
,”
Macromolecules
17
,
2070
2078
(
1984
).
21.
N. T. M.
Klooster
,
F.
Van der Touw
, and
M.
Mandel
, “
Solvent effects in polyelectrolyte solutions. 2. Osmotic, elastic light scattering, and conductometric measurements on (partially) neutralized poly(acrylic acid) in methanol
,”
Macromolecules
17
,
2078
2086
(
1984
).
22.
H. G.
Kim
,
J. H.
Lee
,
H. B.
Lee
, and
M. S.
Jhon
, “
Dissociation behavior of surface-grafted poly(acrylic acid): Effects of surface density and counterion size
,”
J. Colloid Interface Sci.
157
,
82
87
(
1993
).
23.
N. B.
Wyatt
and
M. W.
Liberatore
, “
The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions
,”
Soft Matter
6
,
3346
(
2010
).
24.
H.
Mori
,
M.
Wakagawa
,
S.
Kuroki
, and
M.
Satoh
, “
Counterion mixing effects on conformational transitions of polyelectrolytes 3: Coil-globule transition of alkali metal and tetraalkyl ammonium polysulfonates
,”
Colloid Polym. Sci.
293
,
1023
1033
(
2014
).
25.
A. M.
Rumyantsev
,
A.
Pan
,
S.
Ghosh Roy
,
P.
De
, and
E. Y.
Kramarenko
, “
Polyelectrolyte gel swelling and conductivity vs counterion type, cross-linking density, and solvent polarity
,”
Macromolecules
49
,
6630
6643
(
2016
).
26.
R. G.
Winkler
,
M.
Gold
, and
P.
Reineker
, “
Collapse of polyelectrolyte macromolecules by counterion condensation and ion pair formation: A molecular dynamics simulation study
,”
Phys. Rev. Lett.
80
,
3731
3734
(
1998
).
27.
S.
Liu
and
M.
Muthukumar
, “
Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains
,”
J. Chem. Phys.
116
,
9975
9982
(
2002
).
28.
S.
Liu
,
K.
Ghosh
, and
M.
Muthukumar
, “
Polyelectrolyte solutions with added salt: A simulation study
,”
J. Chem. Phys.
119
,
1813
1823
(
2003
).
29.
N.
Yasumoto
,
N.
Kasahara
,
A.
Sakaki
, and
M.
Satoh
, “
Ion-specific swelling behaviors of partially quaternized poly(4-vinyl pyridine) gel
,”
Colloid Polym. Sci.
284
,
900
908
(
2006
).
30.
N. B.
Wyatt
and
M. W.
Liberatore
, “
Rheology and viscosity scaling of the polyelectrolyte xanthan gum
,”
J. Appl. Poly. Sci.
114
,
4076
4084
(
2009
).
31.
N.
Malikova
,
S.
Čebašek
,
V.
Glenisson
,
D.
Bhowmik
,
G.
Carrot
, and
V.
Vlachy
, “
Aqueous solutions of ionenes: Interactions and counterion specific effects as seen by neutron scattering
,”
Phys. Chem. Chem. Phys.
14
,
12898
(
2012
).
32.
N.
Malikova
,
A.-L.
Rollet
,
S.
Čebašek
,
M.
Tomšič
, and
V.
Vlachy
, “
On the crossroads of current polyelectrolyte theory and counterion-specific effects
,”
Phys. Chem. Chem. Phys.
17
,
5650
5658
(
2015
).
33.
Y.
Fu
,
V.
Bocharova
,
M.
Ma
,
A. P.
Sokolov
,
B. G.
Sumpter
, and
R.
Kumar
, “
Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses
,”
Phys. Chem. Chem. Phys.
19
,
27442
27451
(
2017
).
34.
A. S.
Bodrova
and
I. I.
Potemkin
, “
Influence of the counterion size on swelling and collapse of polyelectrolyte gel
,”
Polym. Sci., Ser. A
49
,
737
744
(
2007
).
35.
J.
Hua
,
M. K.
Mitra
, and
M.
Muthukumar
, “
Theory of volume transition in polyelectrolyte gels with charge regularization
,”
J. Chem. Phys.
136
,
134901
(
2012
).
36.
O. E.
Philippova
,
A. M.
Rumyantsev
,
E. Y.
Kramarenko
, and
A. R.
Khokhlov
, “
New type of swelling behavior upon gel ionization: Theory vs experiment
,”
Macromolecules
46
,
9359
9367
(
2013
).
37.
Y. D.
Gordievskaya
,
Y. A.
Budkov
, and
E. Y.
Kramarenko
, “
An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: Theory and computer simulations
,”
Soft Matter
14
,
3232
3235
(
2018
).
38.
J. S.
Kłos
and
J.
Paturej
, “
Charged dendrimers with finite-size counterions
,”
J. Phys. Chem. B
124
,
7957
7968
(
2020
).
39.
Y.
Nishiyama
and
M.
Satoh
, “
Solvent- and counterion-specific swelling behavior of poly(acrylic acid) gels
,”
J. Polym. Sci., Part B: Polym. Phys.
38
,
2791
2800
(
2000
).
40.
T. H.
Pial
,
H. S.
Sachar
, and
S.
Das
, “
Quantification of mono- and multivalent counterion-mediated bridging in polyelectrolyte brushes
,”
Macromolecules
54
,
4154
4163
(
2021
).
41.
A. G.
Cherstvy
, “
Collapse of highly charged polyelectrolytes triggered by attractive dipole−dipole and correlation-induced electrostatic interactions
,”
J. Phys. Chem. B
114
,
5241
5249
(
2010
).
42.
M. O.
de la Cruz
,
L.
Belloni
,
M.
Delsanti
,
J. P.
Dalbiez
,
O.
Spalla
, and
M.
Drifford
, “
Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts
,”
J. Chem. Phys.
103
,
5781
5791
(
1995
).
43.
A. V.
Ermoshkin
and
M.
Olvera de la Cruz
, “
Polyelectrolytes in the presence of multivalent ions: Gelation versus segregation
,”
Phys. Rev. Lett.
90
,
125504
(
2003
).
44.
P.-Y.
Hsiao
and
E.
Luijten
, “
Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes
,”
Phys. Rev. Lett.
97
,
148301
(
2006
).
45.
S. F.
Edwards
and
P.
Singh
, “
Size of a polymer molecule in solution. Part 1.—Excluded volume problem
,”
J. Chem. Soc., Faraday Trans. 2
75
,
1001
1019
(
1979
).
46.
M.
Muthukumar
, “
Adsorption of a polyelectrolyte chain to a charged surface
,”
J. Chem. Phys.
86
,
7230
7235
(
1987
).
47.
P. J.
Flory
and
W. R.
Krigbaum
, “
Statistical mechanics of dilute polymer solutions. II
,”
J. Chem. Phys.
18
,
1086
1094
(
1950
).
48.
J.-L.
Barrat
and
F.
Joanny
, “
Theory of Polyelectrolyte Solutions
,” in
Advances in Chemical Physics: Polymeric Systems
(
Wiley
,
1996
).
49.
T.
Hofmann
,
R. G.
Winkler
, and
P.
Reineker
, “
Integral equation theory approach to rodlike polyelectrolytes: Counterion condensation
,”
J. Chem. Phys.
114
,
10181
10188
(
2001
).
50.
D.
McQuarrie
,
Statistical Mechanics, G - Reference, Information and Interdisciplinary Subjects Series
(
University Science Books
,
2000
).
51.
M.
Muthukumar
, “
Double screening in polyelectrolyte solutions: Limiting laws and crossover formulas
,”
J. Chem. Phys.
105
,
5183
5199
(
1996
).
52.
M.
Muthukumar
, “
Phase diagram of polyelectrolyte solutions: Weak polymer effect
,”
Macromolecules
35
,
9142
9145
(
2002
).
53.
S.
Mitra
and
A.
Kundagrami
, “
Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory
,”
J. Chem. Phys.
158
,
014904
(
2023
).
54.
P. B.
Warren
, “
Simplified mean field theory for polyelectrolyte phase behaviour
,”
J. Phys. II
7
,
343
361
(
1997
).
55.
K. A.
Mahdi
and
M.
Olvera de la Cruz
, “
Phase diagrams of salt-free polyelectrolyte semidilute solutions
,”
Macromolecules
33
,
7649
7654
(
2000
).
56.
V. Y.
Borue
and
I. Y.
Erukhimovich
, “
A statistical theory of weakly charged polyelectrolytes: Fluctuations, equation of state and microphase separation
,”
Macromolecules
21
,
3240
3249
(
1988
).
57.
J.
Joanny
and
L.
Leibler
, “
Weakly charged polyelectrolytes in a poor solvent
,”
J. Phys.
51
,
545
557
(
1990
).
58.
K.
Shen
and
Z.-G.
Wang
, “
Electrostatic correlations and the polyelectrolyte self energy
,”
J. Chem. Phys.
146
,
084901
(
2017
).
59.
S.
Chen
,
P.
Zhang
, and
Z.-G.
Wang
, “
Complexation between oppositely charged polyelectrolytes in dilute solution: Effects of charge asymmetry
,”
Macromolecules
55
,
3898
3909
(
2022
).
60.
A. R.
Khokhlov
and
E. Y.
Kramarenko
, “
Polyelectrolyte/ionomer behavior in polymer gel collapse
,”
Macromol. Theory Simul.
3
,
45
59
(
1994
).
61.
E. Y.
Kramarenko
,
I. Y.
Erukhimovich
, and
A. R.
Khokhlov
, “
The influence of ion pair formation on the phase behavior of polyelectrolyte solutions
,”
Macromol. Theory Simul.
11
,
462
(
2002
).
62.
A.
Kudlay
,
A. V.
Ermoshkin
, and
M.
Olvera de la Cruz
, “
Complexation of oppositely charged polyelectrolytes: Effect of ion pair formation
,”
Macromolecules
37
,
9231
9241
(
2004
).
63.
S.
Ghosh
,
S.
Mitra
, and
A.
Kundagrami
, “
Polymer complexation: Partially ionizable asymmetric polyelectrolytes
,”
J. Chem. Phys.
158
,
204903
(
2023
).
64.
L.
Li
,
C.
Li
,
Z.
Zhang
, and
E.
Alexov
, “
On the dielectric “constant” of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi
,”
J. Chem. Theory Comput.
9
,
2126
2136
(
2013
).
65.
S.
Chen
and
Z.-G.
Wang
, “
Driving force and pathway in polyelectrolyte complex coacervation
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2209975119
(
2022
).
66.
M.
Dinpajooh
and
D. V.
Matyushov
, “
Dielectric constant of water in the interface
,”
J. Chem. Phys.
145
,
014504
(
2016
).
67.
E.
Fischermeier
,
P.
Pospíšil
,
A.
Sayed
,
M.
Hof
,
M.
Solioz
, and
K.
Fahmy
, “
Dipolar relaxation dynamics at the active site of an ATPase regulated by membrane lateral pressure
,”
Angew. Chem., Int. Ed.
56
,
1269
1272
(
2016
).
68.
A.
Chowdhury
,
S. A.
Kovalenko
,
I. V.
Aramburu
,
P. S.
Tan
,
N. P.
Ernsting
, and
E. A.
Lemke
, “
Mechanism-dependent modulation of ultrafast interfacial water dynamics in intrinsically disordered protein complexes
,”
Angew. Chem., Int. Ed.
58
,
4720
4724
(
2019
).
69.
E. L.
Mehler
and
G.
Eichele
, “
Electrostatic effects in water-accessible regions of proteins
,”
Biochemistry
23
,
3887
3891
(
1984
).
70.
G.
Lamm
and
G. R.
Pack
, “
Calculation of dielectric constants near polyelectrolytes in solution
,”
J. Phys. Chem. B
101
,
959
965
(
1997
).
71.
I.
Rouzina
and
V. A.
Bloomfield
, “
DNA bending by small, mobile multivalent cations
,”
Biophys. J.
74
,
3152
3164
(
1998
).
72.
R.
Podgornik
, “
A variational approach to charged polymer chains: Polymer mediated interactions
,”
J. Chem. Phys.
99
,
7221
7231
(
1993
).
73.
M.
Muthukumar
, “
Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor
,”
J. Chem. Phys.
137
,
034902
(
2012
).
74.
H.
Schiessel
and
P.
Pincus
, “
Counterion-condensation-induced collapse of highly charged polyelectrolytes
,”
Macromolecules
31
,
7953
7959
(
1998
).
75.
P.
Beale
and
R.
Pathria
,
Statistical Mechanics
(
Elsevier
,
1996
).
76.
M.
Muthukumar
, “
Collapse transition of a stiff chain
,”
J. Chem. Phys.
81
,
6272
6276
(
1984
).
77.
M.
Muthukumar
, “
Localization of a polymeric manifold in quenched random media
,”
J. Chem. Phys.
90
,
4594
4603
(
1989
).
78.
Z.-G.
Wang
, “
50th Anniversary perspective: Polymer conformation—A pedagogical review
,”
Macromolecules
50
,
9073
9114
(
2017
).
79.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed (
Academic Press
,
San Diego
,
2011
).
80.
A.
Chowdhury
,
A.
Borgia
,
S.
Ghosh
,
A.
Sottini
,
S.
Mitra
,
R. S.
Eapen
,
M. B.
Borgia
,
T.
Yang
,
N.
Galvanetto
,
M. T.
Ivanović
,
P.
Łukijańczuk
,
R.
Zhu
,
D.
Nettels
,
A.
Kundagrami
, and
B.
Schuler
, “
Driving forces of the complex formation between highly charged disordered proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2304036120
(
2023
).
You do not currently have access to this content.