Integration of non-noble transition metal oxides with graphene is known to construct high-activity electrocatalysts for oxygen evolution reduction (OER). In order to avoid the complexity of traditional synthesis process, a facile electrochemical method is elaborately designed to engineer efficient WO3-x/graphene (photo-)electrocatalyst for OER by a two-electrode electrolysis system, where graphite cathode is exfoliated into graphene and tungsten wire anode evolves into VO-rich WO3-x profiting from formed reductive electrolyte solution. Among as-prepared samples, WO3-x/G-2 shows the best electrocatalytic performance for OER with an overpotential of 320 mV (without iR compensation) at 10 mA/cm2, superior to commercial RuO2 (341 mV). With introduction of light illumination, the activity of WO3-x/G-2 is greatly enhanced and its overpotential decreases to 290 mV, benefiting from additional reaction path produced by photocurrent effect and extra active sites generated by photogenerated carriers (h+). Characterization results indicate that both VO-rich WO3-x and graphene contribute to the efficient OER performance. The activity of WO3-x for OER is decided by the synergistic effect between VO concentration and particle size. The graphene could not only disperse WO3-x nanoparticles, but also improve the holistic conductivity and promote electron transmission. This work supports a novel method for engineering WO3-x/graphene composite for highly efficient (photo-)electrocatalytic performance for OER.

[1]
Q.
Shi
,
C.
Zhu
,
D.
Du
, and
Y.
Lin
,
Chem. Soc. Rev.
48
,
3181
(
2019
).
[2]
L.
Lv
,
Z.
Yang
,
K.
Chen
,
C.
Wang
, and
Y.
Xiong
,
Adv. Energy Mater.
9
,
1
(
2019
).
[3]
M. Z.
Rahman
,
C. W.
Kwong
,
K.
Davey
, and
S. Z.
Qiao
,
Energy Environ. Sci.
9
,
709
(
2016
).
[4]
F.
Yu
,
H.
Zhou
,
Y.
Huang
,
J.
Sun
,
F.
Qin
,
J.
Bao
,
W. A.
Goddard
,
S.
Chen
, and
Z.
Ren
,
Nat. Commun.
9
,
1
(
2018
).
[5]
J.
Diao
,
W.
Yuan
,
Y.
Qiu
,
L.
Cheng
, and
X.
Guo
,
J. Mater. Chem. A
7
,
6730
(
2019
).
[6]
X. Y.
Yu
,
Y.
Feng
,
B.
Guan
,
X. W. D.
Lou
, and
U.
Paik
,
Energy Environ. Sci.
9
,
1246
(
2016
).
[7]
P.
Chen
,
K.
Xu
,
Z.
Fang
,
Y.
Tong
,
J.
Wu
,
X.
Lu
,
X.
Peng
,
H.
Ding
,
C.
Wu
, and
Y.
Xie
,
Angew. Chem.
127
,
14923
(
2015
).
[8]
B.
Seo
,
Y. J.
Sa
,
J.
Woo
,
K.
Kwon
,
J.
Park
,
T. J.
Shin
,
H. Y.
Jeong
, and
S. H.
Joo
,
ACS Catal.
6
,
4347
(
2016
).
[9]
X.
Hu
,
S.
Zhang
,
J.
Sun
,
L.
Yu
,
X.
Qian
,
R.
Hu
,
Y.
Wang
,
H.
Zhao
, and
J.
Zhu
,
Nano Energy
56
,
109
(
2019
).
[10]
W.
Xu
,
F.
Lyu
,
Y.
Bai
,
A.
Gao
,
J.
Feng
,
Z.
Cai
, and
Y.
Yin
,
Nano Energy
43
,
110
(
2018
).
[11]
G.
Chen
,
Y.
Zhu
,
H. M.
Chen
,
Z.
Hu
,
S. F.
Hung
,
N.
Ma
,
J.
Dai
,
H. J.
Lin
,
C. Te
Chen
,
W.
Zhou
, and
Z.
Shao
,
Adv. Mater.
31
,
1
(
2019
).
[12]
L.
Tian
,
X.
Zhai
,
X.
Wang
,
J.
Li
, and
Z.
Li
,
J. Mater. Chem. A
8
,
14400
(
2020
).
[13]
F.
Song
,
M. M.
Busch
,
B.
Lassalle-Kaiser
,
C. S.
Hsu
,
E.
Petkucheva
,
M.
Bensimon
,
H. M.
Chen
,
C.
Corminboeuf
, and
X.
Hu
,
ACS Cent. Sci.
5
,
558
(
2019
).
[14]
S.
Lee
,
K.
Banjac
,
M.
Lingenfelder
, and
X.
Hu
,
Angew. Chem.
131
,
10401
(
2019
).
[15]
A. Govind
Rajan
,
J. M. P.
Martirez
, and
E. A.
Carter
,
J. Am. Chem. Soc.
142
,
3600
(
2020
).
[16]
C.
Lv
,
X.
Wang
,
L.
Gao
,
A.
Wang
,
S.
Wang
,
R.
Wang
,
X.
Ning
,
Y.
Li
,
D. W.
Boukhvalov
,
Z.
Huang
, and
C.
Zhang
,
ACS Catal.
10
,
13323
(
2020
).
[17]
F.
He
,
A.
Meng
,
B.
Cheng
,
W.
Ho
, and
J.
Yu
,
Chin. J. Catal.
41
,
9
(
2020
).
[18]
X.
Wang
,
M.
Sun
,
M.
Murugananthan
,
Y.
Zhang
, and
L.
Zhang
,
Appl. Catal. B: Environ.
260
,
118205
(
2020
).
[19]
J.
Fu
,
Q.
Xu
,
J.
Low
,
C.
Jiang
, and
J.
Yu
,
Appl. Catal. B: Environ.
243
,
556
(
2019
).
[20]
C.
Feng
,
L.
Tang
,
Y.
Deng
,
J.
Wang
,
W.
Tang
,
Y.
Liu
,
Z.
Chen
, and
J.
Yu
,
J.
Wang
, and
Q.
Liang
,
Chem. Eng. J.
389
,
124474
(
2020
).
[21]
X.
Ji
,
M.
Ma
,
R.
Ge
,
X.
Ren
,
H.
Wang
,
J.
Liu
,
Z.
Liu
,
A. M.
Asiri
, and
X.
Sun
,
Inorg. Chem.
56
,
14743
(
2017
).
[22]
J. X.
Feng
,
S. H.
Ye
,
H.
Xu
,
Y. X.
Tong
, and
G. R.
Li
,
Adv. Mater.
28
,
4698
(
2016
).
[23]
A.
Grimaud
,
K. J.
May
,
C. E.
Carlton
,
Y. L.
Lee
,
M.
Risch
,
W. T.
Hong
,
J.
Zhou
, and
Y.
Shao-Horn
,
Nat. Commun.
4
,
1
(
2013
).
[24]
S. K.
Deb
,
Sol. Energy Mater. Sol. Cells.
92
,
245
(
2008
).
[25]
J.
Chen
,
D.
Yu
,
W.
Liao
,
M.
Zheng
,
L.
Xiao
,
H.
Zhu
,
M.
Zhang
,
M.
Du
, and
J.
Yao
,
ACS Appl. Mater. Interfaces
8
,
18132
(
2016
).
[26]
L.
Sharma
,
P.
Kumar
, and
A.
Halder
,
ChemElectroChem.
6
,
3420
(
2019
).
[27]
J.
Zhang
,
Z.
Liu
, and
Z.
Liu
,
ACS Appl. Mater. Interfaces.
8
,
9684
(
2016
).
[28]
L.
Li
,
S.
Xiao
,
R.
Li
,
Y.
Cao
,
Y.
Chen
,
Z.
Li
,
G.
Li
, and
H.
Li
,
ACS Appl. Energy Mater.
1
,
6871
(
2018
).
[29]
X.
Liu
,
H.
Zhou
,
S.
Pei
,
S.
Xie
, and
S.
You
,
Chem. Eng. J.
381
,
122740
(
2020
).
[30]
H.
Guo
,
N.
Jiang
,
H.
Wang
,
N.
Lu
,
K.
Shang
,
J.
Li
, and
Y.
Wu
,
Chem. Eng. J.
372
,
226
(
2019
).
[31]
H.
Xiao
,
B.
Li
,
M.
Zhao
,
Y.
Li
,
T.
Hu
,
J.
Jia
, and
H.
Wu
,
Chem. Commun.
57
,
4118
(
2021
).
[32]
H.
Xiao
,
J.
Zhang
,
M.
Zhao
,
J.
Ma
,
Y.
Li
,
T.
Hu
,
Z.
Zheng
,
J.
Jia
, and
H.
Wu
,
J. Power Sources
451
,
227770
(
2020
).
[33]
H.
Xiao
,
S.
Xue
,
J.
Zhang
,
M.
Zhao
,
J.
Ma
,
S.
Chen
,
Z.
Zheng
,
J.
Jia
, and
H.
Wu
,
Chem. Eng. J.
408
,
127271
(
2021
).
[34]
M.
Zhao
,
X.
Ma
, and
H.
Xiao
,
Electrochem. Commun.
103
,
77
(
2019
).
[35]
L.
Zhuang
,
L.
Ge
,
Y.
Yang
,
M.
Li
,
Y.
Jia
,
X.
Yao
, and
Z.
Zhu
,
Adv. Mater.
29
,
1606793
(
2017
).
[36]
H. S.
Kim
,
J. B.
Cook
,
H.
Lin
,
J. S.
Ko
,
S. H.
Tolbert
,
V.
Ozolins
, and
B.
Dunn
,
Nat. Mater.
16
,
454
(
2017
).
[37]
Z.
Lu
,
G.
Chen
,
S.
Siahrostami
,
Z.
Chen
,
K.
Liu
,
J.
Xie
,
L.
Liao
,
T.
Wu
,
Di.
Lin
,
Y.
Liu
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
Y.
Cui
,
Nat. Catal.
1
,
156
(
2018
).
[38]
P.
Balasubramanian
,
S. B.
He
,
A.
Jansirani
,
H. H.
Deng
,
H. P.
Peng
,
X. H.
Xia
, and
W.
Chen
,
Chem. Eng. J.
405
,
126732
(
2021
).
[39]
T.
Zhu
,
H.
Bin Wu
,
Y.
Wang
,
R.
Xu
, and
X. W.
Lou
,
Adv. Energy Mater.
2
,
1497
(
2012
).
[40]
X.
Han
,
Y.
Yu
,
Y.
Huang
,
D.
Liu
, and
B.
Zhang
,
ACS Catal.
7
,
6464
(
2017
).
[41]
X.
Meng
,
L.
Liu
,
S.
Ouyang
,
H.
Xu
,
D.
Wang
,
N.
Zhao
, and
J.
Ye
,
Adv. Mater.
28
,
6781
(
2016
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.